(理)函數(shù)滿足:對一切 查看更多

 

題目列表(包括答案和解析)

(理)已知函數(shù),P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點.
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè),其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時,an=4Tn+2,問是否存在角a,使不等式對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)滿足下列條件:

         ①函數(shù)的定義域為[0,1];

         ②對于任意

        ③對于滿足條件的任意兩個數(shù)

   (1)證明:對于任意的;

   (2)證明:于任意的;

   (3)不等式對于一切x∈[0,1]都成立嗎?試說明理由.

查看答案和解析>>

已知函數(shù)滿足下列條件:
①函數(shù)的定義域為[0,1];
②對于任意;
③對于滿足條件的任意兩個數(shù)
(1)證明:對于任意的;
(2)證明:于任意的;
(3)不等式對于一切x∈[0,1]都成立嗎?試說明理由.

查看答案和解析>>

已知函數(shù)滿足下列條件:

       ①函數(shù)的定義域為[0,1];

       ②對于任意;

      ③對于滿足條件的任意兩個數(shù)

   (1)證明:對于任意的;

   (2)證明:于任意的

   (3)不等式對于一切x∈[0,1]都成立嗎?試說明理由.

查看答案和解析>>

(1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
①試求直線PQ的斜率kPQ的取值范圍;
②求f(x)圖象上任一點切線的斜率k的范圍;
(2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①當(dāng)D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
②當(dāng)D=(0,
3
3
)
,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

A

B

A

C

B

理D 文B

D

理D 文C

二.填空題

13.(理)-1;(文) (-1,1)∪(2,+∞).         14. 90.

15. ;                                     16. (理)x+2y-3=0; (文).

三.解答題

17.  解:(I)平移以后得

,又關(guān)于對稱

, *,

當(dāng)且僅當(dāng)時取最大值,

所以,取得最大值時的集合為.…………6分

(II)的最小正周期為; ,

在[上的值域為.…………12分

18.解:(I)當(dāng)n∈N時有:=2-3n,   ∴=2-3(n+1),

兩式相減得:=2-2-3   ∴=2+3! 撤

+3=2(+3)。

=2-3,   ∴=3, +3=6≠0   ……4分

∴數(shù)列{+3}是首項6,公比為2的等比數(shù)列.從而c=3.  ……6分

 (II)由(1)知:+3=,  ∴-3.    ………8分

(Ⅲ)假設(shè)數(shù)列{}中是否存在三項,,,(r<s<t),它們可以構(gòu)成等差數(shù)列,

<<,   ∴只能是=2,

∴(-3)+(-3)=2(-3)

.∴1+. 

 ∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.

因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項.  ………12分

19. (理)解:設(shè)從甲袋中取出個白球的事件為,從乙袋中取出個白球的事件為其中=0,1,2,則,.

(I),,

所以………………………..6分

(II)分布列是

0

1

2

3

4

P

……………12分

(文) 19.(I)三人恰好買到同一只股票的概率。  ……4分

(II)解法一:三人中恰好有兩個買到同一只股票的概率.……9分

由(I)知,三人恰好買到同一只股票的概率為,所以三人中至少有兩人買到同一只股票的概率。  ……12分

 

20.證明:(I)因為底面ABCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,  在△PAB中,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD…………3分

文本框:  (II)解法一:作EG//PA交AD于G,

由PA⊥平面ABCD. 知EG⊥平面ABCD.

作GH⊥AC于H,連結(jié)EH,則EH⊥AC,∠EHG即為二面角的

平面角,設(shè)為.

又PE : ED=2 : 1,所以

從而    ……………7分

解法二:以A為坐標(biāo)原點,直線AD、AP分別為y軸、

z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點的坐標(biāo)分別為

所以 設(shè)二面角E-AC-D的平面角為,并設(shè)平面EAC的一個法向量是

平面ACD的一個法向量取……………7分

(Ⅲ)解法一:設(shè)點F是棱PC上的點,如上述方法建立坐標(biāo)系.

       令  , 得

解得      即 時,

亦即,F(xiàn)是PC的中點時,、共面.

又  BF平面AEC,所以當(dāng)F是棱PC的中點時,BF//平面AEC…………12分

<style id="dv3sn"></style>

    (證法一) 取PE的中點M,連結(jié)FM,則FM//CE.  ①

    由   知E是MD的中點.

    連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點.

    所以  BM//OE.  ②

    由①、②知,平面BFM//平面AEC.

    又  BF平面BFM,所以BF//平面AEC.

    (證法二)因為 

             

    所以  、共面.又 BF平面ABC,從而BF//平面AEC. ……12分

     

    21.解:(I)

    ,又

     ,

                                     …… 4分

    (II)

    ,其過點 

                                         …… 7分

    (Ⅲ)由(2)知,

    、  

     

    ①當(dāng)。

    ②當(dāng)時,

     

    所以直線AB的方程為                       …… 12分

    22.(理科)(Ⅰ)由已知條件代入,數(shù)形結(jié)合易知y=lnx與y=的交點為A(α,),y=ex與y=的交點為B(β,);由KAB= ―1,易知αβ=2009           …………4分

    (Ⅱ)設(shè)=,則

    在區(qū)間(1,)上是減函數(shù)    又∵

    ,即,

    ∴在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方         …9分

    (Ⅲ)當(dāng)時,左邊=,右邊=,不等式成立;

    當(dāng)時,

                 =

    由已知,  ∴

    .                  ………………………………14分

    (文科)解:(Ⅰ)當(dāng)cosθ=0時,函數(shù)f(x)=4x3+在R上遞增,故無極值. …3分

    (Ⅱ)函數(shù)f、(x)=12x2-6xcosθ,令f、(x)=0,得x=0或x=cosθ

    由于0≤θ≤及(1)結(jié)論,f極小(x)=f(cosθ)=-cos3θ+>0,

    ∴0<cosθ<,而0≤θ≤,∴θ的取值范圍是(,)!7分

    (Ⅲ)f(x)在區(qū)間(2a-1,a)是增函數(shù),則或,

    由得 a≤0,又∵θ∈(,),∴要使2a-1≥恒成立,

    即要2a-1≥,即a≥,由,得≤a<1,

    ∴實數(shù)a的取值范圍是(-∞,0]∪[,1) …14分


    同步練習(xí)冊答案