題目列表(包括答案和解析)
(本小題滿分12分)
某電視臺為了宣傳某沿江城市經(jīng)濟(jì)崛起的情況,特舉辦了一期有獎知識問答活動,活動對18—48歲的人群隨機(jī)抽取 n人回答問題“沿江城市帶包括哪幾個城市”,統(tǒng)計數(shù)據(jù)結(jié)果如下表:
組數(shù) | 分組 | 回答正 確的人數(shù) | 占本組 的頻率 |
第1組 | [18,28〕 | 240 | X |
第2組 | [28,38〕 | 300 | 0.6 |
第3組 | [38,48〕 | a | 0.4 |
組數(shù) | 分組 | 回答正 確的人數(shù) | 占本組 的頻率 |
第1組 | [18,28〕 | 240 | X |
第2組 | [28,38〕 | 300 | 0.6 |
第3組 | [38,48〕 | a | 0.4 |
(本小題滿分12分,(Ⅰ)小問5分,(Ⅱ)小問7分.)
如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)d為點P到直線l: 的距離,若,求的值.
(本小題滿分12分)
經(jīng)統(tǒng)計,某大醫(yī)院一個結(jié)算窗口每天排隊結(jié)算的人數(shù)及相應(yīng)的概率如下:
排隊人數(shù) | 0—5 | 6—10 | 11—15 | 16—20 | 21—25 | 25人以上 |
概 率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1) 每天不超過20人排隊結(jié)算的概率是多少?
(2) 一周7天中,若有3天以上(含3天)出現(xiàn)超過15人排隊結(jié)算的概率大于0.75,醫(yī)院就需要增加結(jié)算窗口,請問該醫(yī)院是否需要增加結(jié)算窗口?
(本小題滿分12分,(Ⅰ)小問5分,(Ⅱ)小問7分.)
如題(21)圖,和的平面上的兩點,動點滿足:
(Ⅰ)求點的軌跡方程;
(Ⅱ)若。
一、選擇題:本題考查基礎(chǔ)知識和基本運算. 每題5分,滿分60分.
1.D 2。C 3.C 4.A 5.B 6.D
7.A 8.B 9.A 10.C 11.B 12.A
二、填空題:本題考查基礎(chǔ)知識和基本運算. 每題4分,滿分16分.
13.15 14.4 15 . 16
三、解答題:本題共6大題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
17.本題主要考查三角函數(shù)性質(zhì)、三角恒等變換等基本知識,考查推理和運算能力.
解:( I )
(Ⅱ)
18.本題主要考查簡單隨機(jī)抽樣,用古典概型計算事件發(fā)生的概率等基礎(chǔ)知識,考查研究基本事件的能力,以及應(yīng)用意識。
解:(I)設(shè)紅色球有個,依題意得 紅色球有4個.
(II)記“甲取出的球的編號比乙的大”為事件A
所有的基本事件有(紅1,白1),(紅l,藍(lán)2),(紅1,藍(lán)3),(白l,紅1),
(白1,藍(lán)2),(白1,藍(lán)3),(藍(lán)2,紅1),(藍(lán)2,自1),(藍(lán)2,藍(lán)3),
(藍(lán)3,紅1),(藍(lán)3,白1),(藍(lán)3,藍(lán)2),共12個
事件A包含的基本事件有(藍(lán)2,紅1),(藍(lán)2,白1),
(藍(lán)3,藍(lán)2),共5個
所以,
19.本題主要考查線面平行與垂直關(guān)系,及多面體的體積計算等基礎(chǔ)知識,考查空間想象能力,邏輯思維能力和運算能力.
(I)解:取CD的中點為F,連EF,則EF為的中位線.
EF∥A
又EF 平面A1BC,. EF∥平面A1BC
(II)證:四邊形ABCD為直角梯形且AD∥BC,
AB⊥BC,AD=2,AB=_BC=1.AC=CD= ,
AD2=AC2+CD2 即 為直角三角形 CD⊥AC又四棱 柱ABCD一A1B
CD 底面ABCD AAl⊥CD,又AA1與AC交于點A,
CD⊥平面A1ACCl
由CD⊥平面AlACCl,CD為四棱錐D-A1ACCl的底面 A1ACCl上的高,
又AAl垂直于底面ABCD,四邊形A1ACC1為矩形
四棱錐D―A1ACCI的體積
20.此題主要考查數(shù)列、等差、等比數(shù)列的概念、數(shù)列的遞推公式、數(shù)列前n項和的求法
同時考查學(xué)生的分析問題與解決問題的能力,邏輯推理能力及運算能力.
解:(I)
(Ⅱ)
21.本題主要考查直線方程與性質(zhì)、橢圓方程與性質(zhì)以及直線與曲線的位置關(guān)系等基礎(chǔ)知
識;考查考生數(shù)形結(jié)合思想、運算求解能力、推理論證能力。
解:(I)
(Ⅱ)
22.本題主要考查二次函數(shù)及其性質(zhì)、導(dǎo)數(shù)的基本知識,幾何意義及其應(yīng)用,同時考查考生分類討論思想方法及化規(guī)的能力:
解:(Ⅰ)
(Ⅱ)
(Ⅲ)
①
②
③
方程有兩個不等的正根,存在兩條滿足條件的切線;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com