題目列表(包括答案和解析)
π |
3 |
π |
6 |
3 |
(本小題滿分14分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;(5分)
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(6分)
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?(3分)
(參考公式: )
“天宮一號”的順利升空標(biāo)志著我國火箭運載的技術(shù)日趨完善.據(jù)悉,擔(dān)任“天宮 一號”發(fā)射任務(wù)的是長征二號FT1火箭.為了確保發(fā)射萬無一失,科學(xué)家對長征二號FT1運載火箭進(jìn)行了 170余項技術(shù)狀態(tài)更改,增加了某項新技術(shù). 該項新技術(shù)要進(jìn)入試用階段 必須 對其 中 四項不同指標(biāo)甲、乙、丙、丁進(jìn)行通過量化檢測. 假設(shè)該項新技術(shù)的指標(biāo) 甲、 乙、丙、丁獨立通過檢測合格的概率分別為,指標(biāo)甲、乙、丙、丁被檢測合格分別記4分、3分、2分、1分,若某項指標(biāo)不合格,則該項指標(biāo)記0分,各項指標(biāo)檢測結(jié)果互不影響.
(I )求該項新技術(shù)量化得分為6分的概率;
(II)求該項新技術(shù)的四個指標(biāo)中恰有三個指標(biāo)被檢測合格化得分不低于7分的概率
某研究機(jī)構(gòu)為了研究人的腳的大小與身高之間的關(guān)系,隨機(jī)抽測了20人,得到如下數(shù)據(jù):
序 號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高x(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
腳長y( 碼 ) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序 號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高x(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
腳長y( 碼 ) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
| 高 個 | 非高個 | 合 計 |
大 腳 | | | |
非大腳 | | 12 | |
合 計 | | | 20 |
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
B
D
C
C
D
B
A
A
B
C
二、填空題:
13.2x 14. x=-1 15.k2=2.143 沒有 16.(-∞,-3]
三、解答題:
17.(1)z=1+i |z|= (2分)
(2)a=0,b=1 (4分)
18.綜合法、分析法均可(略)
19.(1)依題意有:解得a=1,b=-3(3分)
(2)f(x)=x3-3x f′(x)=3x2-3
當(dāng)f′(x)>0,即x>1或x<-1,∴單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)
當(dāng)f′(x)>0,-1<x<1,∴單調(diào)遞減區(qū)間為(-1,1) (5分)
20.(1)a1=,a2=,a3=,a4= (2分)
(2)an= (3分)
(3)Sn=1- (5分)
21.解:依題意,直線斜率顯然存在,設(shè)直線斜率為k,則直線的方程為:y+1=kx
拋物線y=-與直線相交于A、B兩點
∴x2+2kx-2=0,∴△=4k2+8>0,
設(shè)A(x1,x2),B(x2,y2) 則x1+x2=-2k
∵kOA+KOB=1 ∴
∴即x1+x2=-2=-2k∴k=1
22.(1)a=1,b=3
(2)∵f(x)=x3+3x2在[m,m+1]上單調(diào)遞增
∴f′(x)=3x2+6x≥0,在[m,m+1]上
∵3x2+6x≥0, ∴x≥0或x≤-2
∴m+1≤-2或m≥0即m≤-3或m≥0
∴m的取值范圍是{m|m≤-3或m≥0}
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com