所以的最大值為.所以內(nèi)切圓圓心的坐標(biāo)為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.

【解析】(1)

所以,的最小正周期

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118369506745619_ST.files/image002.png">在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),

,,

故函數(shù)在區(qū)間上的最大值為,最小值為-1.

 

查看答案和解析>>

設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記曲線在點(diǎn)(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

【解析】第一問利用由已知,所以

,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

切線軸的交點(diǎn)為,與軸的交點(diǎn)為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí)

解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

切線軸的交點(diǎn)為,與軸的交點(diǎn)為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí),

所以,的最大值為

 

查看答案和解析>>

設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對(duì)如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

所以

(2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

于是,,

    

所以,當(dāng),且時(shí),取得最大值1。

(3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設(shè),

。

得定義知,,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

所以

     

     

所以,

對(duì)數(shù)表

1

1

1

-1

-1

 

,

綜上,對(duì)于所有的,的最大值為

 

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域?yàn)椋?,2),.

當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域?yàn)椋?,2),.

(1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

(2)令,當(dāng)時(shí),

,得

時(shí),的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

當(dāng),即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">

所以在區(qū)間上的最大值為。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案