(II)當時.由于..----.. 查看更多

 

題目列表(包括答案和解析)

設a1,a2,…,a20是首項為1,公比為2的等比數(shù)列.對于滿足0≤k≤19的整數(shù)k,數(shù)列b1b2,…,b20bn=
an+k
an+k-20
當1≤n≤20-k時
當20-k<n≤20時
確定.記M=
20
n=1
anbn

(I)當k=1時,求M的值;
(II)求M的最小值及相應的k的值.

查看答案和解析>>

 

        如圖,PA⊥ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點F是PB的中點,點E在 邊BC上移動.

   (I)點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;

   (II)證明:無論點E在邊BC的何處,都有PE⊥AF;

   (III)當BE等于何值時,二面角P—DE—A的大小為45°.

 
 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

曲線y=f(x)=ax3+bx2+cx,當x=1-
3
時,f(x)有極小值,當x=1+
3
處有極大值,且在x=1處切線的斜率為
3
2

(I)求f(x);
(II)曲線上是否存在一點P,使得y=f(x)的圖象關于點P中心對稱?若存在,請求出點P坐標,并給出證明;若不存在,請說明理由.

查看答案和解析>>

如圖,在Rt△ABC中,AB=BC=4,點£在線段AB上.過點E作EF∥BC交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(I )求證:EF丄PB;
(II )試問:當點E在線段AB上移動時,二面角P-FC-B的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
精英家教網(wǎng)

查看答案和解析>>

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)為f(x)的導數(shù).
(I)當a=-3時證明y=f(x)在區(qū)間(-1,1)上不是單調(diào)函數(shù).
(II)設g(x)=
19
6
x-
1
3
,是否存在實數(shù)a,對于任意的x1∈[-1,1]存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在求出a的取值范圍;若不存在說明理由.

查看答案和解析>>


同步練習冊答案