(2)過點(diǎn)Q作直線l與曲線C交于A.B兩點(diǎn).設(shè)N是過點(diǎn).且以 為方向向量的直線上一動(dòng)點(diǎn).滿足(O為坐標(biāo)原點(diǎn)).問是否存在這樣的直線l.使得四邊形OANB為矩形?若存在.求出直線l的方程,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點(diǎn)F的直線l與曲線C交于A、B兩點(diǎn).

(ⅰ)過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,證明:MA⊥MB;

(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無論AB怎樣運(yùn)動(dòng),都有∠AQF=∠BQF?證明你的結(jié)論.

查看答案和解析>>

設(shè)雙曲線=1的兩個(gè)焦點(diǎn)分別為F1、F2,離心率為2.

(Ⅰ)求雙曲線的漸近線方程;

(Ⅱ)過點(diǎn)N(1,0)能否作出直線l,使l與雙曲線C交于P、Q兩點(diǎn),且·=0,若存在,求出直線方程,若不存在,說明理由.

查看答案和解析>>

已知點(diǎn)(2,2)在雙曲線M:=1(m>0,n>0)上,圓C:(x-a)2+(y-b)2=r2(a>0,b∈R,r>0)與雙曲線M的一條漸近線相切于點(diǎn)(1,2),且圓C被x軸截得的弦長(zhǎng)為4.

(Ⅰ)求雙曲線M的方程;

(Ⅱ)求圓C的方程;

(Ⅲ)過圓C內(nèi)一定點(diǎn)Q(s,t)(不同于點(diǎn)C)任作一條直線與圓C相交于點(diǎn)A、B,以A、B為切點(diǎn)分別作圓C的切線PA、PB,求證:點(diǎn)P在定直線l上,并求出直線l的方程.

查看答案和解析>>

已知平面上一定點(diǎn)C(4,0)和一定直線l∶x=1,點(diǎn)P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(+2)·(-2)=0.

(1)問點(diǎn)P在什么曲線上?并求出該曲線的方程;

(2)設(shè)直線l∶y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.

   (1)求曲線C的方程;

   (2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且以 為方向向量的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當(dāng)且僅當(dāng)時(shí),△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且, 平面ABE.

      • (Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

        ∵正方形ABCD邊長(zhǎng)為2,∴BG⊥AC,BG=,

        平面ACE,

        (Ⅲ)過點(diǎn)E作交AB于點(diǎn)O. OE=1.

        ∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

        設(shè)D到平面ACE的距離為h,

        平面BCE, 

        <form id="hfipz"><acronym id="hfipz"><kbd id="hfipz"></kbd></acronym></form>
      • 解法二:(Ⅰ)同解法一.

        (Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直

        線為x軸,AB所在直線為y軸,過O點(diǎn)平行

        于AD的直線為z軸,建立空間直角坐標(biāo)系

        O―xyz,如圖.

        面BCE,BE面BCE, ,

        的中點(diǎn),

         設(shè)平面AEC的一個(gè)法向量為,

        解得

               令是平面AEC的一個(gè)法向量.

               又平面BAC的一個(gè)法向量為,

               ∴二面角B―AC―E的大小為

        (III)∵AD//z軸,AD=2,∴

        ∴點(diǎn)D到平面ACE的距離

        20.解:(1)

        ;

        (2)

        ,

        ,有最大值;即每年建造12艘船,年利潤(rùn)最大(8分)

        (3),(11分)

        所以,當(dāng)時(shí),單調(diào)遞減,所以單調(diào)區(qū)間是,且

        21.解:(I)∵,且,

        ①④

        又由在處取得極小值-2可知②且

        將①②③式聯(lián)立得   (4分)

        同理由

        的單調(diào)遞減區(qū)間是[-1,1], 單調(diào)遞增區(qū)間是(-∞,1   (6分)

        (II)由上問知:,∴。

        又∵!。∴。∴

        ,∴>0!。(8分)

        ∴當(dāng)時(shí),的解集是

        顯然A不成立,不滿足題意。

        ,且的解集是。   (10分)

        又由A。解得。(12分)

        22.解:(1)設(shè)M(x,y)是所求曲線上的任意一點(diǎn),Px1y1)是方程x2 +y2 =4的圓上的任意一點(diǎn),則

            則有:得,

            軌跡C的方程為

           (1)當(dāng)直線l的斜率不存在時(shí),與橢圓無交點(diǎn).

            所以設(shè)直線l的方程為y = k(x+2),與橢圓交于A(x1y1)、B(x2y2)兩點(diǎn),N點(diǎn)所在直線方程為

            由

            由△=

            即 …   

            ,∴四邊形OANB為平行四邊形

            假設(shè)存在矩形OANB,則,即,

            即,

            于是有    得 … 設(shè)

        即點(diǎn)N在直線上.

         ∴存在直線l使四邊形OANB為矩形,直線l的方程為

         

         

         

         


        同步練習(xí)冊(cè)答案