題目列表(包括答案和解析)
如圖l,在四邊形A8CD中,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,分別與BA、CD的延長線交于點M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖1中,連結BD,取BD的中點H,連結HE、HF,根據(jù)三角形中位線定理,可證得HE=HF,從而∠HFE=∠HEF,再利用平行線的性質,可證得∠BME=∠CNE.)
問題一:如圖2,在四邊形ADBC中,AB與CD相交于點O,AB=CD,E、F分別是BC、AD的中點,連結EF,分別交DC、AB于點M、N,判斷△OMN的形狀,請直接寫出結論.
問題二:如圖3,在△ABC中,AC>AB,D點在AC上,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,與BA的延長線交于點G, 若∠EFC=600,連結GD,判斷△AGD的形狀并證明.
如圖,在四邊形A8CD中,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,分別與BA、CD的延長線交于點M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖中,連結BD,取BD的中點H,連結HE、HF,根據(jù)三角形中位線定理,可證得HE=HF,從而∠HFE=∠HEF,再利用平行線的性質,可證得∠BME=∠CNE.)
問題一:如圖,在四邊形ADBC中,AB與CD相交于點O,AB=CD,E、F分別是BC、AD的中點,連結EF,分別交DC、AB于點M、N,判斷△OMN的形狀,請直接寫出結論.
問題二:如圖,在△ABC中,AC>AB,D點在AC上,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,與BA的延長線交于點G,若∠EFC=600,連結GD,判斷△AGD的形狀并證明.
如圖,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,分別與BA、CD的延長線交于點M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在下圖中,連結BD,取BD的中點H,連結HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質,可證得∠BME=∠CNE.)
問題一:如圖,在四邊形ADBC中,AB與CD相交于點O,AB=CD,E、F分別是BC、AD的中點,連結EF,分別交DC、AB于點M、N,判斷△OMN的形狀,請直接寫出結論.
問題二:如圖,在△ABC中,AC>AB,D點在AC上,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,與BA的延長線交于點G,若∠EFC=60°,連結GD,判斷△AGD的形狀并證明.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com