(理)集合P具有性質(zhì)“若x∈P,則
1
x
∈P
”,就稱集合P是伙伴關(guān)系的集合,集合A={-1,0,
1
3
,
1
2
,1,2,3,4}
的所有非空子集中具有伙伴關(guān)系的集合的個數(shù)為(  )
A.3B.7C.15D.31
C
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理)集合P具有性質(zhì)“若x∈P,則
1
x
∈P
”,就稱集合P是伙伴關(guān)系的集合,集合A={-1,0,
1
3
,
1
2
,1,2,3,4}
的所有非空子集中具有伙伴關(guān)系的集合的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(理)集合P具有性質(zhì)“若x∈P,則
1
x
∈P
”,就稱集合P是伙伴關(guān)系的集合,集合A={-1,0,
1
3
,
1
2
,1,2,3,4}
的所有非空子集中具有伙伴關(guān)系的集合的個數(shù)為( 。
A.3B.7C.15D.31

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省保定二中高三第三次大考數(shù)學試卷(文理合卷)(解析版) 題型:選擇題

(理)集合P具有性質(zhì)“若x∈P,則”,就稱集合P是伙伴關(guān)系的集合,集合的所有非空子集中具有伙伴關(guān)系的集合的個數(shù)為( )
A.3
B.7
C.15
D.31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

(理)集合P具有性質(zhì)“若x∈P,則數(shù)學公式”,就稱集合P是伙伴關(guān)系的集合,集合數(shù)學公式的所有非空子集中具有伙伴關(guān)系的集合的個數(shù)為


  1. A.
    3
  2. B.
    7
  3. C.
    15
  4. D.
    31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時,
1
x
∈A
.則稱集合A是“好集”.
(Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
(Ⅲ)對任意的一個“好集”A,分別判斷下面命題的真假,并說明理由.
命題p:若x,y∈A,則必有xy∈A;
命題q:若x,y∈A,且x≠0,則必有
y
x
∈A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M具有以下性質(zhì):①0∈M,1∈M;②若x、y∈M,則x-y∈M,且x≠0時,
1x
∈M
.則稱集合M是“好集”.
(Ⅰ)分別判斷集合P={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x、y∈A,則x+y∈A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時,數(shù)學公式.則稱集合A是“好集”.
(Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
(Ⅲ)對任意的一個“好集”A,分別判斷下面命題的真假,并說明理由.
命題p:若x,y∈A,則必有xy∈A;
命題q:若x,y∈A,且x≠0,則必有數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若集合M具有以下性質(zhì):①0∈M,1∈M;②若x、y∈M,則x-y∈M,且x≠0時,數(shù)學公式.則稱集合M是“好集”.
(Ⅰ)分別判斷集合P={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x、y∈A,則x+y∈A.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若集合M具有以下性質(zhì):①0∈M,1∈M;②若x、y∈M,則x-y∈M,且x≠0時,
1
x
∈M
.則稱集合M是“好集”.
(Ⅰ)分別判斷集合P={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x、y∈A,則x+y∈A.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時,
1
x
∈A
.則稱集合A是“好集”.
(Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
(Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
(Ⅲ)對任意的一個“好集”A,分別判斷下面命題的真假,并說明理由.
命題p:若x,y∈A,則必有xy∈A;
命題q:若x,y∈A,且x≠0,則必有
y
x
∈A

查看答案和解析>>


同步練習冊答案