如果存在1,2,3,…,n的一個(gè)新系列a1,a2,a3,…,an,使得k+ak(k=1,2,…,n)都是完全平方數(shù),則稱n為“好數(shù)”.若n分別取4,5,6,則這三個(gè)數(shù)中,“好數(shù)”的個(gè)數(shù)是( 。
A.3B.2C.1D.0
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、如果存在1,2,3,…,n的一個(gè)新系列a1,a2,a3,…,an,使得k+ak(k=1,2,…,n)都是完全平方數(shù),則稱n為“好數(shù)”.若n分別取4,5,6,則這三個(gè)數(shù)中,“好數(shù)”的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:莆田模擬 題型:單選題

如果存在1,2,3,…,n的一個(gè)新系列a1,a2,a3,…,an,使得k+ak(k=1,2,…,n)都是完全平方數(shù),則稱n為“好數(shù)”.若n分別取4,5,6,則這三個(gè)數(shù)中,“好數(shù)”的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省莆田市高三質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如果存在1,2,3,…,n的一個(gè)新系列a1,a2,a3,…,an,使得k+ak(k=1,2,…,n)都是完全平方數(shù),則稱n為“好數(shù)”.若n分別取4,5,6,則這三個(gè)數(shù)中,“好數(shù)”的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省莆田市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如果存在1,2,3,…,n的一個(gè)新系列a1,a2,a3,…,an,使得k+ak(k=1,2,…,n)都是完全平方數(shù),則稱n為“好數(shù)”.若n分別取4,5,6,則這三個(gè)數(shù)中,“好數(shù)”的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定一個(gè)n項(xiàng)的實(shí)數(shù)列a1,a2,…,an(n∈N*),任意選取一個(gè)實(shí)數(shù)c,變換T(c)將數(shù)列a1,a2,…,an變換為數(shù)列|a1-c|,|a2-c|,…,|an-c|,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)c可以不相同,第k(k∈N*)次變換記為Tk(ck),其中ck為第k次變換時(shí)選擇的實(shí)數(shù).如果通過k次變換后,數(shù)列中的各項(xiàng)均為0,則稱T1(c1),T2(c2),…,Tk(ck)為“k次歸零變換”
(Ⅰ)對(duì)數(shù)列:1,2,4,8,分別寫出經(jīng)變換T1(2),T2(3),T3(4)后得到的數(shù)列;
(Ⅱ)對(duì)數(shù)列:1,3,5,7,給出一個(gè)“k次歸零變換”,其中k≤4;
(Ⅲ)證明:對(duì)任意n項(xiàng)數(shù)列,都存在“n次歸零變換”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定一個(gè)n項(xiàng)的實(shí)數(shù)列數(shù)學(xué)公式,任意選取一個(gè)實(shí)數(shù)c,變換T(c)將數(shù)列a1,a2,…,an變換為數(shù)列|a1-c|,|a2-c|,…,|an-c|,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)c可以不相同,第k(k∈N+)次變換記為Tk(ck),其中ck為第k次變換時(shí)選擇的實(shí)數(shù).如果通過k次變換后,數(shù)列中的各項(xiàng)均為0,則稱T1(c1),T2(c2),…,Tk(ck)為“k次歸零變換”
(Ⅰ)對(duì)數(shù)列:1,2,4,8,分別寫出經(jīng)變換T1(2),T2(3),T3(4)后得到的數(shù)列;
(Ⅱ)對(duì)數(shù)列:1,3,5,7,給出一個(gè)“k次歸零變換”,其中k≤4;
(Ⅲ)證明:對(duì)任意n項(xiàng)數(shù)列,都存在“n次歸零變換”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市朝陽區(qū)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給定一個(gè)n項(xiàng)的實(shí)數(shù)列,任意選取一個(gè)實(shí)數(shù)c,變換T(c)將數(shù)列a1,a2,…,an變換為數(shù)列|a1-c|,|a2-c|,…,|an-c|,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)c可以不相同,第k(k∈N*)次變換記為Tk(ck),其中ck為第k次變換時(shí)選擇的實(shí)數(shù).如果通過k次變換后,數(shù)列中的各項(xiàng)均為0,則稱T1(c1),T2(c2),…,Tk(ck)為“k次歸零變換”
(Ⅰ)對(duì)數(shù)列:1,2,4,8,分別寫出經(jīng)變換T1(2),T2(3),T3(4)后得到的數(shù)列;
(Ⅱ)對(duì)數(shù)列:1,3,5,7,給出一個(gè)“k次歸零變換”,其中k≤4;
(Ⅲ)證明:對(duì)任意n項(xiàng)數(shù)列,都存在“n次歸零變換”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個(gè)峰值.
(Ⅰ)若an=-|n-7|,則{an}的峰值為
0
0
;
(Ⅱ)若an=
n2-tn,  n≤2
-tn+4,  n>2
且{an}存在峰值,則實(shí)數(shù)t的取值范圍是
(0,3)
(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果項(xiàng)數(shù)均為n(n≥2,n∈N+)的兩個(gè)數(shù)列{an},{bn}滿足ak-bk=k(1,2,…,n),且集合{a1,a2,…,an,b1,b2,…,bn}={1,2,3,…,2n},則稱數(shù)列{an},{bn}是一對(duì)“n項(xiàng)相關(guān)數(shù)列”.
(Ⅰ)設(shè){an},{bn}是一對(duì)“4項(xiàng)相關(guān)數(shù)列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并寫出一對(duì)“4項(xiàng)相關(guān)數(shù)列”{an},{bn};
(Ⅱ)是否存在“15項(xiàng)相關(guān)數(shù)列”{an},{bn}?若存在,試寫出一對(duì){an},{bn};若不存在,請(qǐng)說明理由;
(Ⅲ)對(duì)于確定的n,若存在“n項(xiàng)相關(guān)數(shù)列”,試證明符合條件的“n項(xiàng)相關(guān)數(shù)列”有偶數(shù)對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-1-2蘇教版 蘇教版 題型:044

在數(shù)列{an}中,若a1,a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱{an}為“絕對(duì)差數(shù)列”.

(1)舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫出前十項(xiàng));

(2)若“絕對(duì)差數(shù)列”{an}中,a20=3,a21=0.?dāng)?shù)列{bn}滿足bn=an+an+1+an+2,n=1,2,3…,分別判斷當(dāng)n→∞時(shí),an與bn的極限是否存在,如果存在,求出其極限值;

(3)任何“絕對(duì)差數(shù)列”中總含有無窮多個(gè)為零的項(xiàng).

查看答案和解析>>


同步練習(xí)冊(cè)答案