【題目】有一個(gè)測(cè)量彈跳力的體育器材,如圖所示,豎桿的長度分別為200厘米和300厘米,厘米.現(xiàn)有一人站在斜桿下方的點(diǎn)處,直立、單手上舉時(shí)中指指尖(點(diǎn))到地面的高度厘米,屈膝盡力跳起時(shí),中指指尖剛好觸到斜桿的點(diǎn)處,此時(shí),就將與的差值(厘米)作為此人此次的彈跳成績(jī),設(shè)厘米.
(1)用含的代數(shù)式表示;
(2)若他彈跳時(shí)的位置為,求該人的彈跳成績(jī).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】布袋里有四個(gè)小球,球表面分別標(biāo)有2、3、4、6四個(gè)數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機(jī)摸出一個(gè)小球記下數(shù)字為x,再從剩下的三個(gè)球中隨機(jī)摸出一個(gè)球記下數(shù)字為y,點(diǎn)A的坐標(biāo)為(x,y).運(yùn)用畫樹狀圖或列表的方法,寫出A點(diǎn)所有可能的坐標(biāo),并求出點(diǎn)A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=ax+b與反比例函數(shù)y2=交于A,B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)A的縱坐標(biāo)為6,點(diǎn)B的坐標(biāo)為(-3,-2).
(1)求直線和反比例函數(shù)的解析式;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象直接寫出y1<0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,延長BA至點(diǎn)F,延長CB至點(diǎn)E,使BE=AF,連結(jié)CF,EA,AC,延長EA交CF于點(diǎn)G.
(1)求證:△ACE≌△CBF;
(2)求∠CGE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組方程:①;②;③;④;…
它們的根有一定的規(guī)律,都是兩個(gè)連續(xù)的自然數(shù),我們稱這類一元二次方程為“連根一元二次方程”。若也是“連根一元二次方程”,則的值為________,第個(gè)方程為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD,邊長為4,E是邊BC上的一動(dòng)點(diǎn),連DE,取DE中點(diǎn)G,將GE繞E順時(shí)針旋轉(zhuǎn)90°到EF,連接CF,當(dāng)CE為_____時(shí),CF取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13,BC=10,點(diǎn)D為BC的中點(diǎn),DE⊥AB于點(diǎn)E,則tan∠BDE的值等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是( )
A.①④B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元。根據(jù)市場(chǎng)需求,乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件利潤減少2元,設(shè)每天安排人生產(chǎn)乙產(chǎn)品。
(1)根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | — | — | 15 |
乙 | — |
(2)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等,已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(元)的最大值及相應(yīng)的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com