【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行附近的B地,已知B地位于A地的北偏東67°方向,距離A地520km,C地位于B地南偏西30°方向,若要打通穿山隧道建高鐵,求線段AC的長(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.73,sin67°≈,cos67°≈,tan67°≈ )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).
(1)填空:點A的坐標是 ,點B的坐標是 ;
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′.請寫出△A′B′C′的三個頂點坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)在第一象限的圖象上有A、B兩點,過點B作軸于點C,現(xiàn)有一動點P從點A出發(fā),沿勻速運動,終點為C,在點P的運動過程中,分別過點P作軸于點M,軸于點N,設(shè)四邊形OMPN的面積為S,P點運動的時間為t,則S關(guān)于t的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
如圖1,在中,CD為角平分線,,,求證:CD為的完美分割線.
在中,,CD是的完美分割線,且為等腰三角形,求的度數(shù).
如圖2,中,,,CD是的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AEB和Rt△AFC中,BE與AC相交于點M,與CF相交于點D,AB與CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.給出下列結(jié)論:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正確的結(jié)論是( )
A. ①③④ B. ②③④ C. ①②③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,則∠AOF等于( 。
A. 140° B. 130° C. 120° D. 110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB繞著一點旋轉(zhuǎn)到△A′OB′的位置,可以看到點A旋轉(zhuǎn)到點A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠A′OB′,這些都是互相對應(yīng)的點、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點B的對應(yīng)點是點______;線段OB的對應(yīng)線段是線段_____;∠A的對應(yīng)角是______;旋轉(zhuǎn)中心是點_______;旋轉(zhuǎn)的角度是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,AE=BE.
(1)猜想:∠B的度數(shù),并證明你的猜想.
(2)如果AC=3cm,CD=2cm,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y = 2x2 -4x -6.
(1)用配方法將y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并寫出對稱軸和頂點坐標。
(2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;
(3)當x取何值時,y隨x的增大而減少?
(4)當x取何值是,,y<0,
(5)當時,求y的取值范圍;
(6)求函數(shù)圖像與兩坐標軸交點所圍成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com