【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種購買個人年票(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,BC三類,A類年票每張240元,持票進入該園區(qū)時,無需再購買門票;B類年票每張120元,持票者進入該園區(qū)時,需再購買門票,每次4元;C類年票每張80元,持票者進入該園區(qū)時,需再購買門票,每次6.

1)如果只能選擇一種購買年票的方式,并且計劃在一年中花費160元在該公園的門票上,通過計算,找出可進入該園區(qū)次數(shù)最多的方式.

2)一年中進入該公園超過多少次時,A類年票比較合算?

【答案】(1)若計劃花費160元在該公園的門票上時,則選擇購買C類年票進入公園的次數(shù)最多,為13.(2)一年中進入該公園超過30次時,購買A類年票比較合算.

【解析】

1160元不可能選A年票,分別算出選擇B、C年票的次數(shù),比較之后進行選擇即可;(2)設(shè)超過x次時,購買A類年票比較合算,依題意列出不等式組,解出不等式組即可

1)解:不可能選A年票.若選B年票,則

若選C年票,則;

若不購買年票,則

所以,若計劃花費160元在該公園的門票上時,則選擇購買C類年票進入公園的次數(shù)最多,為13.

2)解:設(shè)超過x次時,購買A類年票比較合算,依題意得

解得

因此,一年中進入該公園超過30次時,購買A類年票比較合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程組,則下列結(jié)論中:①當(dāng)時,方程組的解是;②當(dāng),的值互為相反數(shù)時,;③不存在一個實數(shù)使得;④若,則正確的個數(shù)有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點D為直角三角形ABC的斜邊AB上的中點,DEABACE, EB、CD,線段CDBF交于點F.tanA=,=_____.如圖2,點D為直角三角形ABC的斜邊AB上的一點,DEABACE, EB、CD;線段CDBF交于點F.,tanA=,則=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知直線的解析式是,并且與軸、軸分別交于AB兩點.一個半徑為1.5的⊙C,圓心C從點(01.5)開始以每秒0.5個單位的速度沿著軸向下運動,當(dāng)⊙C與直線相切時則該圓運動的時間為( 。

A. 3秒或6 B. 6 C. 3 D. 6秒或16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點Aa0),Bc,c),C0,c),且滿足,P點從A點出發(fā)沿x軸正方向以每秒2個單位長度的速度勻速移動,Q點從O點出發(fā)沿y軸負方向以每秒1個單位長度的速度勻速移動.

1)直接寫出點B的坐標,AOBC位置關(guān)系是;

2)當(dāng)PQ分別是線段AO,OC上時,連接PB,QB,使,求出點P的坐標;

3)在PQ的運動過程中,當(dāng)∠CBQ=30°時,請?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,點分別在上,把沿翻折,的落點是對角線上的點,則四邊形的面積是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊△ABC的兩個頂點坐標為A-3,0),B30),則點的坐標為____,△ABC的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AB的坐標分別為A(-1,0),B3,0),現(xiàn)同時將點AB分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD

1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC(提示:平行四邊形的面積=×)

2)在y軸上是否存在一點P,連接PA,PB,使SPAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.

3)點P是線段BD上的一個動點,連接PCPO,當(dāng)點PBD上移動時(不與BD重合)的值是否發(fā)生變化,若不變請求出該值,若會變請并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知(a+b2=7,(a-b2=4,求a2+b2ab的值.

2)分解因式:

x2-8xy+16y2

②(x+y+12-x-y+12

查看答案和解析>>

同步練習(xí)冊答案