【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2 ),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn)
(1)如圖1,求∠DAO的大小及線段DE的長(zhǎng);
(2)過點(diǎn)E的直線l與x軸交于點(diǎn)F,與射線DC交于點(diǎn)G.連接OE,△OEF′是△OEF關(guān)于直線OE對(duì)稱的圖形,記直線EF′與射線DC的交點(diǎn)為H,△EHC的面積為3 .
①如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求GH,DG的長(zhǎng);
②當(dāng)點(diǎn)G在點(diǎn)H的右側(cè)時(shí),求點(diǎn)F的坐標(biāo)(直接寫出結(jié)果即可).
【答案】
(1)解:∵A(﹣2,0),D(0,2 )
∴AO=2,DO=2 ,
∴tan∠DAO= = ,
∴∠DAO=60°,
∴∠ADO=30°,
∴AD=2AO=4,
∵點(diǎn)E為線段AD中點(diǎn),
∴DE=2;
(2)解:①如圖2,
過點(diǎn)E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°= ,
∴GH=6,
∵CD∥AB,
∴∠DGE=∠OFE,
∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),
∴OE= AD=AE,
∵∠EAO=60°,
∴△EAO是等邊三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEH=∠DGE,
∵∠DEH=∠EDG,
∴△DHE∽△DEG,
∴ ,
∴DE2=DG×DH,
設(shè)DG=x,則DH=x+6,
∴4=x(x+6),
∴x1=﹣3+ ,x2=﹣3﹣ ,
∴DG=﹣3+ .
②如圖3,
過點(diǎn)E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°= ,
∴GH=6,
∵CD∥AB,
∴∠DHE=∠OFE,
∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),
∴OE= AD=AE,
∵∠EAO=60°,
∴△EAO是等邊三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEG=∠DHE,
∵∠DEG=∠EDH,
∴△DGE∽△DEH,
∴ ,
∴DE2=DG×DH,
設(shè)DH=x,則DG=x+6,
∴4=x(x+6),
∴x1=﹣3+ ,x2=﹣3﹣ ,
∴DH=﹣3+ .
∴DG=3+
∴DG=AF=3+ ,
∴OF=5+ ,
∴F(﹣5﹣ ,0)
【解析】(1)根據(jù)點(diǎn)A的坐,點(diǎn)D的坐標(biāo),在Rt△AOD中,利用解直角三角形易求出結(jié)論。
(2)①由(1)可知∠DAO=60°,添加輔助線,過點(diǎn)E作EM⊥CD,利用解直角三角形可求出EM、GH的長(zhǎng),根據(jù)已知易證明△OEF′≌△OEF,可得出角相等,點(diǎn)E是AD的中點(diǎn),易得到△EAO是等邊三角形,再證明△DHE∽△DEG,得出對(duì)應(yīng)邊成比例,設(shè)DG=x,則DH=x+6,建立方程,求出方程的解即可;②要求點(diǎn)F的坐標(biāo),就需求OF的長(zhǎng),解法與①類似求出DG,DG=AF,即可求出OF的長(zhǎng),從而求出點(diǎn)F的坐標(biāo)。
【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查:購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備多花萬元,購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備少花萬元.
(1)求甲乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司決定購(gòu)買甲型設(shè)備不少于臺(tái),預(yù)算購(gòu)買節(jié)省能源的新設(shè)備的資金不超過萬元,你認(rèn)為該公司有那幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BA1和CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的角平分線,CA2是∠A1CD的角平分線,BA3是∠A2BD的角平分線,CA3是∠A2CD的角平分線,若∠A1=α,則∠A2018為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請(qǐng)寫出DE與BF的位置關(guān)系,并證明;
(3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),試求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,小正方形的頂點(diǎn)叫做格點(diǎn),是一個(gè)格點(diǎn)三角形(即的三個(gè)頂點(diǎn)都在格點(diǎn)上),根據(jù)要求回答下列問題:
(1)畫出先向右平移6格,再向下平移2格所得的;
(2)過點(diǎn)B畫直線,將分成面積相等的兩個(gè)三角形;
(3)的面積是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為C(0,8),并且經(jīng)過A(8,0),點(diǎn)P是拋物線上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)P作直線y=8的垂線,垂足為點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)猜想并探究:對(duì)于任意一點(diǎn)P,PD與PF的差是否為固定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由;
(3)求:①當(dāng)△PDE的周長(zhǎng)最小時(shí)的點(diǎn)P坐標(biāo);②使△PDE的面積為整數(shù)的點(diǎn)P的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前我市“校園手機(jī)”現(xiàn)象越來越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,重慶一中初三(1)班數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我校11000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;
(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從中選2位家長(zhǎng)參加學(xué)校組織的家校活動(dòng),用列表法或畫樹狀圖的方法求選出的2人來自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加學(xué)校舉辦的“新城杯”足球聯(lián)賽,新城中學(xué)七(1)班學(xué)生去商場(chǎng)購(gòu)買了A品牌足球1個(gè)、B品牌足球2個(gè),共花費(fèi)400元,七(2)班學(xué)生購(gòu)買了品牌A足球3個(gè)、B品牌足球1個(gè),共花費(fèi)450元.
(1)求購(gòu)買一個(gè)A種品牌、一個(gè)B種品牌的足球各需多少元?
(2)為了進(jìn)一步發(fā)展“校園足球”,學(xué)校準(zhǔn)備再次購(gòu)進(jìn)A、B兩種品牌的足球,學(xué)校提供專項(xiàng)經(jīng)費(fèi)850元全部用于購(gòu)買這兩種品牌的足球,學(xué)校這次最多能購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)y1=a(x﹣2)2+c(a≠0)的圖象與y軸的交點(diǎn)為(0,1),在x軸上截得的線段長(zhǎng)為 .
(1)求a、c的值.
(2)對(duì)于任意實(shí)數(shù)k,規(guī)定:當(dāng)﹣2≤x≤1時(shí),關(guān)于x的函數(shù)y2=y1﹣kx的最小值稱為k的“貢獻(xiàn)值”,記作g(k).求g(k)的解析式.
(3)在(2)條件下,當(dāng)“貢獻(xiàn)值”g(k)=1時(shí),求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com