【題目】如圖,PA、PB、CD分別切⊙O于A、B、E,CD交PA、PB于C、D兩點,若∠P=40°,則∠PAE+∠PBE的度數(shù)為( )
A. 50° B. 62° C. 66° D. 70°
【答案】D
【解析】
由PA、PB、CD分別切⊙O于A、B、E,CD交PA、PB于C、D兩點,根據(jù)切線長定理即可得:CE=CA,DE=DB,然后由等邊對等角與三角形外角的性質(zhì),可求得∠PAE= ∠PCD,∠PBE= ∠PDC,繼而求得∠PAE+∠PBE的度數(shù).
∵PA、PB、CD分別切⊙O于A. B.E,CD交PA、PB于C.D兩點,
∴CE=CA,DE=DB,
∴∠CAE=∠CEA,∠DEB=∠DBE,
∴∠PCD=∠CAE+∠CEA=2∠CAE,∠PDC=∠DEB+∠DBE=2∠DBE,
∴∠CAE=∠PCD,∠DBE=∠PDC,
即∠PAE=∠PCD,∠PBE=∠PDC,
∵∠P=40,
∴∠PAE+∠PBE=∠PCD+∠PDC=(∠PCD+∠PDC)=(180∠P)=70.
故答案選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知經(jīng)過原點的拋物線與軸的另一個交點為,現(xiàn)將拋物線向右平移個單位長度,所得拋物線與軸交于,與原拋物線交于點,設(shè)的面積為,則用表示=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;
(2)求證:;
(3)若BC=AB,求tan∠CDF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(4,0)、B(2,2),連接OB、AB.
(1)求拋物線的解析式;
(2)求證:△OAB是等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com