【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關系式用配方法化為的形式,并寫出它的頂點坐標、對稱軸.
求出它的圖象與坐標軸的交點坐標.
在直角坐標系中,畫出它的圖象.
根據圖象說明:當為何值時,;當為何值時,.
【答案】(1),頂點(2,9),對稱軸x=2
(2)與x軸交點(5,0)(-1,0),與y軸交點(0,5)
(3)圖略
(4)當-1<x<5時,y>0,當x>5或x<-1時,y<0。
【解析】
試題(1)用配方法整理,進而得出頂點坐標和對稱軸即可;
(2)讓函數(shù)值為0,求得一元二次方程的兩個解即為這個二次函數(shù)的圖象與坐標軸的交點的橫坐標,讓x=0,可求得拋物線與y軸的交點坐標;找到與y軸的交點,x軸的交點,對稱軸,即可畫出大致圖象;
(3)由(1)和(2)中的條件即可畫出它的圖象;
(4)分別找到x軸上方和下方函數(shù)圖象所對應的自變量的取值即可.
試題解析:(1)y=-x2+4x+5=-(x2-4x+4)+9=-(x-2)2+9;
故它的頂點坐標為(2,9)、對稱軸為:x=2;(2)圖象與x軸相交是y=0,則:
0=-(x-2)2+9,
解得x1=5,x2=-1,
∴這個二次函數(shù)的圖象與x軸的交點坐標為(5,0),(-1,0);
當x=0時,y=5,
∴與y軸的交點坐標為(0,5);
(3)畫出大致圖象為
;
4)-1<x<5時 y>0;x<-1或x>5時 y<0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為12,點O為對角線AC、BD的交點,點E在CD上,tan∠CBE= ,過點C作CF⊥BE,垂足為F,連接OF,將△OCF繞著點O逆時針旋轉90°得到△ODG,連接FG、FD,則△DFG的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點I為△ABC的內心,連AI交△ABC的外接圓于點D,若AI=2CD,點E為弦AC的中點,連接EI,IC,若IC=6,ID=5,則IE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點D,交AC于點E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關系,并證明你的結論.
(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com