將拋物線向右平移一個單位,所得函數(shù)解析式為            .
y=-(x-1)2

試題分析:直接根據(jù)“左加右減”的原則進(jìn)行解答即可.
試題解析:由“左加右減”的原則知,將拋物線y=-x2向右平移一個單位,所得函數(shù)解析式為y=-(x-1)2
考點: 二次函數(shù)圖象與幾何變換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在直角坐標(biāo)系中,已知點A(0,2),點B(-2,0),過點B和線段OA的中點C作直線BC,以線段BC為邊向上作正方形BCDE.

(1)填空:點D的坐標(biāo)為         ,點E的坐標(biāo)為          
(2)若拋物線y=aa2+ba+c(a≠0)經(jīng)過A,D,E三點,求該拋物線的解析式;
(3)若正方形和拋物線均以每秒個單位長度的速度沿射線BC同時向上平移,直至正方形的頂點E落在y軸上時,正方形和拋物線均停止運動.
① 在運動過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
② 運動停止時,請直接寫出此時的拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖像開口方向__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的坐標(biāo)是(1,0),點B的坐標(biāo)是(﹣3,0).

(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(﹣,)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線y=-x2+px+q的對稱軸為x=﹣3,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,1).要在坐標(biāo)軸上找一點P,使得△PMN的周長最小,則點P的坐標(biāo)為(    )
A.(0,2)B.(,0)
C.(0,2)或(,0)D.以上都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(4,3),(3,0).

(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖像經(jīng)過怎樣的平移得到的圖像?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)a<0時,拋物線y=x2+2ax+1+2a2的頂點在(      )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線向左平移3個單位,再向下平移2個單位后,所得的拋物線的表達(dá)式是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案