【題目】紅旗鎮(zhèn)鎮(zhèn)政府大力發(fā)動(dòng)農(nóng)戶擴(kuò)大柑橘和蔬菜種植面積,取得了較好的經(jīng)濟(jì)效益.今年紅旗鎮(zhèn)柑橘和蔬菜的收成比去年一共增加了80噸,其中柑橘的收成比去年增加了20%,蔬菜的收成比去年增加了30%,從而使今年的收成共達(dá)到420噸.

1)紅旗鎮(zhèn)去年柑橘和蔬菜的收成各多少噸?

2)由于今年大豐收,紅旗鎮(zhèn)政府計(jì)劃用甲、乙兩種貨車共33輛將柑橘和蔬菜全部一次性運(yùn)到外地去銷售.已知一輛甲種貨車最多可裝13噸柑橘和3噸蔬菜;一輛乙種貨車最多可裝柑橘和蔬菜各6噸,安排甲、乙兩種貨車共有幾種方案?

3)若甲種貨車的運(yùn)費(fèi)為每輛600元,乙種貨車的運(yùn)費(fèi)為每輛500元,在(2)的情況下,如何安排運(yùn)費(fèi)最少,最少為多少?

【答案】1)紅旗鎮(zhèn)去年柑橘的收成是220噸,蔬菜的收成是120噸;(2)方案有五種;(3)安排10輛甲車,23輛乙車運(yùn)費(fèi)最少,最少為16500元.

【解析】

(1)設(shè)紅旗鎮(zhèn)去年柑橘和蔬菜的收成各是x,y噸,然后列出方程組求解即可;

(2)設(shè)安排甲車a輛,則安排乙車(33a)輛,然后根據(jù)運(yùn)送蔬菜和水果的袋數(shù)列出不等式組求解,再根據(jù)a是正整數(shù)確定運(yùn)送方案;

(3)表示出運(yùn)輸費(fèi)用,然后根據(jù)一次函數(shù)的增減性確定運(yùn)輸費(fèi)最少的方案即可.

1)設(shè)紅旗鎮(zhèn)去年柑橘和蔬菜的收成各是x,y噸,

根據(jù)題意得:,

解得:,

答:紅旗鎮(zhèn)去年柑橘的收成是220噸,蔬菜的收成是120噸;

2)∵220×(1+20%)=264噸,120×(1+30%)=156噸,

設(shè)安排甲車a輛,則安排乙車(33a)輛,

根據(jù)題意得

解得:,

∵車的輛數(shù)a是正整數(shù),∴a=10、11、12、13、14,∴設(shè)計(jì)方案有五種:

方案一:甲車10輛,乙車23輛,

方案二:甲車11輛,乙車22輛;

方案三:甲車12輛,乙車21輛;

方案四:甲車13輛,乙車20輛;

方案五:甲車14輛,乙車19輛;

3)運(yùn)輸費(fèi)用W=600a+500(33a=100a+16500

k=1000

Wa的增大而增大,

a=10時(shí),運(yùn)輸費(fèi)用最少,最少運(yùn)輸費(fèi)=100×10+16500=17500元.

答:安排10輛甲車,23輛乙車運(yùn)費(fèi)最少,最少為17500元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(a,b)是一次函數(shù)y=(k-2)x+m與反比例函數(shù)的圖象的交點(diǎn),且a、b是關(guān)于x的一元二次方程的兩個(gè)不相等的實(shí)數(shù)根,其中k為非負(fù)整數(shù),m、n為常數(shù).

(1)求k的值;

(2)求一次函數(shù)與反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)將原來(lái)400平方米的正方形場(chǎng)地改建成300平方米的長(zhǎng)方形場(chǎng)地,且長(zhǎng)和寬之比為3∶2.如果把原來(lái)正方形場(chǎng)地的鐵柵欄圍墻利用起來(lái)圍成新場(chǎng)地的長(zhǎng)方形圍墻,那么這些鐵柵欄是否夠用?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,OP平分∠AOB,PAOAPBOB,垂足為AB,連接AB,下列結(jié)論中不一定成立的是(

A.PA=PBB.PO平分∠APBC.OA=OBD.AB平分OP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtACB中,AC=BC=8,OAB的中點(diǎn),以O為直角頂點(diǎn)作等腰直角三角形OEF,與邊AC,BC相交于點(diǎn)M,N.有下列結(jié)論:①AM=CN;②CM+CN=8;③;④當(dāng)MAC的中點(diǎn)時(shí),OM=ON.其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以AB為直徑的BD于點(diǎn)C,交AD于點(diǎn)E,于點(diǎn)G,連接FEFC

求證:GC的切線;

填空:

,,則的面積為______

當(dāng)的度數(shù)為______時(shí),四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解八年級(jí)學(xué)生對(duì)(科學(xué))、(技術(shù))、(工程)、(藝術(shù))、(數(shù)學(xué))中哪一個(gè)領(lǐng)域最感興趣的情況,該校對(duì)八年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下的條形圖和扇形圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)這次抽樣調(diào)查共調(diào)查了多少名學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)求扇形統(tǒng)計(jì)圖中(數(shù)學(xué))所對(duì)應(yīng)的圓心角度數(shù);

4)若該校八年級(jí)學(xué)生共有400人,請(qǐng)根據(jù)樣本數(shù)據(jù)估計(jì)該校八年級(jí)學(xué)生中對(duì)(科學(xué))最感興趣的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2、B3在射線OM上,A1B1A2、A2B2A3、A3B3A4均為等邊三角形,若OA1=a,則A7B7A8的邊長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點(diǎn)A,將直線y=x向上平移4個(gè)單位長(zhǎng)度后,y軸交于點(diǎn)C,與雙曲線y= (k>0,x>0)交于點(diǎn)B,OA=3BC,k的值為(   )

A. 3 B. 6 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案