【題目】問(wèn)題背景:如圖1:在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線(xiàn)段AC、BC、CD之間的數(shù)量關(guān)系,小吳同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B、C分別落在點(diǎn)A、E處(如圖2),易證點(diǎn)C、A、E在同一條直線(xiàn)上,并且△CDE是等腰直角三角形,所以CE=
CD,從而得出結(jié)論:AC+BC=CD.
(1)簡(jiǎn)單應(yīng)用:在圖1中,若AC=,BC=2,則CD= .
(2)拓展規(guī)律,如圖3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示)
(3)如圖4,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿(mǎn)足AE=AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),直接寫(xiě)出線(xiàn)段PQ與AC的數(shù)量關(guān)系是 .
【答案】(1)CD=3 ; (2)CD=;(3)PQ=AC.
【解析】
(1)根據(jù)材料中給出的關(guān)系AC+BC=CD代入數(shù)據(jù)求解即可(2)以AB為直徑作⊙O,連接OD并延長(zhǎng)⊙O于點(diǎn)D1,連接D1A,D1B,D1C,結(jié)合圓的性質(zhì)和勾股定理求解.(3)根據(jù)已知的條件,分情況作圖解答,注意E在直線(xiàn)AC的位置.
解:(1)由題意知AC+BC=CD,將AC=,BC=2,代入求得CD=3
(2)
以AB為直徑作⊙O,連接OD并延長(zhǎng)⊙O于點(diǎn)D1,連接D1A,D1B,D1C,如圖,由題目可知:AC+BC=D1C, ∴D1C= ,又∵D1D是⊙O的直徑,∴∠DCD1=90°,AC=m,BC=n,∴由勾股定理可求得:AB=m+n,∴D1D=AB=m+n∵D1C+CD=D1D,
∴= m+n- ,∵m<n,∴CD=
(3)
當(dāng)點(diǎn)E在直線(xiàn)AC的左側(cè)時(shí),如圖,
連接CQ,PC,
∵AC=BC,∠ACB=90°,
點(diǎn)P是AB的中點(diǎn),
∴AP=CP,∠APC=90°,
又∵CA=CE,點(diǎn)Q是AE的中點(diǎn),
∴∠CQA=90°,
設(shè)AC=a,
∵AE=AC,
∴AE=a,
∴AQ=AE=a,
由勾股定理可求得:CQ=a,
由(2)的證明過(guò)程可知:AQ+CQ=PQ,
∴PQ=a +a,
∴PQ=AC
當(dāng)點(diǎn)E在直線(xiàn)AC的右側(cè)時(shí),如圖,
連接CQ、CP,
同理可知:∠AQC=∠APC=90°,
設(shè)AC=a,
∴AQ=AE=a,
由勾股定理可求得:CQ=a,
由(2)的結(jié)論可知:PQ=(CQ-AQ),
∴PQ=AC
綜上所述,線(xiàn)段PQ與AC的數(shù)量關(guān)系是PQ=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)的頂點(diǎn)為P(1,4),拋物線(xiàn)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)求四邊形OBPC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y1=a(x+2)2+m過(guò)原點(diǎn),與拋物線(xiàn)y2=(x﹣3)2+n交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線(xiàn),分別交兩條拋物線(xiàn)于點(diǎn)B,C.下列結(jié)論:①兩條拋物線(xiàn)的對(duì)稱(chēng)軸距離為5;②x=0時(shí),y2=5;③當(dāng)x>3時(shí),y1﹣y2>0;④y軸是線(xiàn)段BC的中垂線(xiàn).正確結(jié)論是________(填寫(xiě)正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù),當(dāng)且時(shí),的最小值為,最大值為,則的值為( )
A. 2B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C,M是BC的中點(diǎn),P是A′B′的中點(diǎn),連接PM,若BC=2,∠BAC=30°,則線(xiàn)段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE,垂足為F
(1)求證:DF=AB;
(2)若∠FAD=30°,且AB=4,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿(mǎn)足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)線(xiàn)段BE為何值時(shí),線(xiàn)段AM最短,最短是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com