【題目】某工廠計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品共2500噸,每生產(chǎn)1噸甲產(chǎn)品可獲得利潤(rùn)0.3萬(wàn)元,每生產(chǎn)1噸乙產(chǎn)品可獲得利潤(rùn)0.4萬(wàn)元.設(shè)該工廠生產(chǎn)了甲產(chǎn)品x(噸),生產(chǎn)甲、乙兩種產(chǎn)品獲得的總利潤(rùn)為y(萬(wàn)元).

1)求yx之間的函數(shù)表達(dá)式;

2)若每生產(chǎn)1噸甲產(chǎn)品需要A原料0.25噸,每生產(chǎn)1噸乙產(chǎn)品需要A原料0.5噸.受市場(chǎng)影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產(chǎn)甲、乙兩種產(chǎn)品各為多少?lài)崟r(shí),能獲得最大利潤(rùn).

【答案】1;(2)工廠生產(chǎn)甲產(chǎn)品1000噸,乙產(chǎn)品1500噸時(shí),能獲得最大利潤(rùn).

【解析】

1)利潤(rùn)y(元)=生產(chǎn)甲產(chǎn)品的利潤(rùn)+生產(chǎn)乙產(chǎn)品的利潤(rùn);而生產(chǎn)甲產(chǎn)品的利潤(rùn)=生產(chǎn)1噸甲產(chǎn)品的利潤(rùn)0.3萬(wàn)元×甲產(chǎn)品的噸數(shù)x,即0.3x萬(wàn)元,生產(chǎn)乙產(chǎn)品的利潤(rùn)=生產(chǎn)1噸乙產(chǎn)品的利潤(rùn)0.4萬(wàn)元×乙產(chǎn)品的噸數(shù)(2500x),即0.42500x)萬(wàn)元.

2)由(1)得yx的一次函數(shù),根據(jù)函數(shù)的增減性,結(jié)合自變量x的取值范圍再確定當(dāng)x取何值時(shí),利潤(rùn)y最大.

1.

2)由題意得:,解得.

又因?yàn)?/span>,所以.

由(1)可知,,所以的值隨著的增加而減小.

所以當(dāng)時(shí),取最大值,此時(shí)生產(chǎn)乙種產(chǎn)品(噸).

答:工廠生產(chǎn)甲產(chǎn)品1000噸,乙產(chǎn)品1500噸,時(shí),能獲得最大利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司根據(jù)市場(chǎng)計(jì)劃調(diào)整投資策略,對(duì),兩種產(chǎn)品進(jìn)行市場(chǎng)調(diào)查,收集數(shù)據(jù)如表:

項(xiàng)目

產(chǎn)品

年固定成本

(單位:萬(wàn)元)

每件成本

(單位:萬(wàn)元)

每件產(chǎn)品銷(xiāo)售價(jià)

(萬(wàn)元)

每年最多可生產(chǎn)的件數(shù)

其中是待定常數(shù),其值是由生產(chǎn)的材料的市場(chǎng)價(jià)格決定的,變化范圍是,銷(xiāo)售產(chǎn)品時(shí)需繳納萬(wàn)元的關(guān)稅,其中為生產(chǎn)產(chǎn)品的件數(shù),假定所有產(chǎn)品都能在當(dāng)年售出,設(shè)生產(chǎn),兩種產(chǎn)品的年利潤(rùn)分別為、(萬(wàn)元),寫(xiě)出、之間的函數(shù)關(guān)系式,注明其自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(2)若方程兩實(shí)數(shù)根分別為,且滿(mǎn)足,求實(shí)數(shù)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)要印制期末考試卷,甲印刷廠提出:每套試卷收0.6元印刷費(fèi),另收400元制版費(fèi);乙印刷廠提出:每套試卷收1元印刷費(fèi),不再收取制版費(fèi).

(1)分別寫(xiě)出兩個(gè)廠的收費(fèi)y()與印刷數(shù)量x()之間的函數(shù)關(guān)系式;

(2)請(qǐng)?jiān)谏厦娴闹苯亲鴺?biāo)系中分別作出(1)中兩個(gè)函數(shù)的圖象;

(3)若學(xué)校有學(xué)生2000,為保證每個(gè)學(xué)生均有試卷,則學(xué)校至少要付出印刷費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCBAC=90°,ABC=ACB,又∠BDC=BCD,且∠1=2,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知,如圖邊長(zhǎng)為2的正方形ABCD中,∠MAN的兩邊分別交BCCD邊于M、N兩點(diǎn), 且∠MAN=45.

(1)求證:MN=BM+DN.

(2)若AM、AN交對(duì)角線(xiàn)BD于E、F兩點(diǎn),設(shè)BF=y,DE=x,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)E在△ABC內(nèi),∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.

(1)當(dāng)α=60°時(shí)(如圖1),

①判斷△ABC的形狀,并說(shuō)明理由;

②求證:BD=AE;

(2)當(dāng)α=90°時(shí)(如圖2),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.

(1)若AE=CF;

①求證:AF=BE,并求APB的度數(shù);

②若AE=2,試求APAF的值;

(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線(xiàn),切點(diǎn)為B,OC相交于點(diǎn)D,且CD=2,BC=4,

(1)求⊙O的半徑;

(2)連接AD并延長(zhǎng),交BC于點(diǎn)E,取BE的中點(diǎn)F,連接DF,試判斷DF與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案