【題目】如圖Ⅰ,已知:AD=AB,AD⊥AB,AC=AE,AC⊥AE.
(1)若反向延長△ABC的高AM交DE于點N,過D作DH⊥MN.求證:①DH=AM;②DN=EN
(2)如圖Ⅱ,若AM為△ABC的中線,反向延長AM交DE于點N,求證:AN⊥DE.
【答案】(1)①見解析;②見解析;(2)見解析.
【解析】
(1)①利用AAS證明△ADH≌△BAM,可推出DH=AM;
②作EF⊥MN交MN的延長線于F,同法可證EF=AM,推出DH=EF,然后利用AAS證明△DNH≌△ENF即可;
(2)延長AM到F,使得MF=AM,證明四邊形ABCF是平行四邊形,再證明△ADE≌△CFA,得到∠E=∠CAF,由∠CAF+∠EAN=90°,推出∠EAN+∠E=90°,得到∠ANE=90°,即可求解.
(1)證明:①∵∠BAD=∠AHD=∠AMB=90°,
∴∠DAH+∠BAM=90°,∠DAH+∠ADH=90°,
∴∠BAM=∠ADH,
∵AB=AD,
∴△ADH≌△BAM(AAS),
∴DH=AM;
②如圖,作EF⊥MN交MN的延長線于F,
同①可證EF=AM,
∵DH=AM,
∴DH=EF,
∵∠DHN=∠EFN,∠DNH=∠ENF,
∴△DNH≌△ENF(AAS),
∴DN=EN;
(2)如圖,延長AM到F,使得MF=AM,
∵AM=MF,BM=CM,
∴四邊形ABFC是平行四邊形,
∴AB=CF,AB∥CF,
∴∠BAC+∠ACF=180°,
∵AD⊥AB, AC⊥AE
∴∠BAD=∠EAC=180°,
∴∠BAC+∠DAE=180°,
∴∠DAE=∠ACF,
∵AD=CF,AE=AC,
∴△ADE≌△CFA,
∴∠E=∠CAF,
∵∠CAF+∠EAN=90°,
∴∠EAN+∠E=90°,
∴∠ANE=90°,
∴AN⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲于某日下午1時騎自行車從A地出發(fā)前往B地,乙于同日下午騎摩托車從A地出發(fā)前往B地,如圖所示,圖中折線PQR和線段MN分別表示甲和乙所行駛的路程和時間之間的關系圖象,試根據(jù)圖象回答下列問題.
(1)A、B兩地相距多少千米?甲出發(fā)幾小時,乙才開始出發(fā)?
(2)甲騎自行車的平均速度是多少?乙騎摩托車的平均速度是多少?
(3)乙在該日下午幾時追上了甲?這時兩人離B地還有多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[x]表示不超過x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:①當x=﹣0.5時,y=0.5;②y的取值范圍是:0≤y≤1;③對于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有 (只填寫正確命題的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個三角形的兩條邊長為1cm和2cm,一個內(nèi)角為45°.
(1)請你利用如圖45°角,畫出一個滿足題設條件的三角形.
(2)你是否還能畫出既滿足題設條件,又與(1)中所畫的不全等的三角形?若能,請用“尺規(guī)作圖”畫出,若不能,請說明理由.
(3)如果將題設條件改為“一個三角形的兩條邊長為3cm和4cm,一個內(nèi)角為45°”,畫出滿足這一條件的,且彼此不全等的所有三角形.(要求在圖中標記3cm和4cm的邊長)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:兩個二次項系數(shù)之和為1,對稱軸相同,且圖象與y軸交點也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為.
請你分別寫出,的友好同軸二次函數(shù);
滿足什么條件的二次函數(shù)沒有友好同軸二次函數(shù)?滿足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù):與其友好同軸二次函數(shù)都與y軸交于點A,點B、C分別在、上,點B,C的橫坐標均為,它們關于的對稱軸的對稱點分別為,,連結(jié),,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是-塊長方形空地,長為米,寬為米,現(xiàn)要對其進行修整,在空白部分鋪設條寬度為米的小路,其余陰影部分種植草坪.
(1)用整式表示小路的面積;
(2)用整式表示草坪的面積;
(3)現(xiàn)有兩種修整方案,方案一:修建小路的寬度為米;方案二:修建小路的寬度為米.鋪設小路的造價為每平方米元,種植草坪的造價為每平方米元,請問選用哪種方案最劃算.( 寫出計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點.
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;
(3)P為拋物線上一點,它關于直線BC的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形MNPQ中,動點R從點N出發(fā),沿著方向運動至點M處停止.設點R運動的路程為x,△MNR的面積為y,如果y關于x的函數(shù)圖象如圖②所示,那么下列說法不正確的是( )
A.矩形MNPQ的周長是18B.當x=2時,y=5
C.當x=6時,y=10D.當y=8時,x=10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com