【題目】一個(gè)不透明的袋子中裝有若干個(gè)除顏色外均相同的小球,小明每次從袋子中摸出一個(gè)球,記錄下顏色,然后放回,重復(fù)這樣的試驗(yàn)1000次,記錄結(jié)果如下:
實(shí)驗(yàn)次數(shù)n | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 |
摸到紅球 次數(shù)m | 151 | 221 | 289 | 358 | 429 | 497 | 571 | 702 |
摸到紅球 頻率 | 0.75 | 0.74 | 0.72 | 0.72 | 0.72 | 0.71 | a | b |
(1)表格中a=_____;(精確到0.01)
(2)估計(jì)從袋子中摸出一個(gè)球恰好是紅球的概率約為______;(精確到0.1)
(3)如果袋子中有7個(gè)紅球,那么袋子中除了紅球,估計(jì)還有幾個(gè)其他顏色的球?
【答案】(1)0.71;(2) 0.7 ; (3) 3
【解析】
(1)直接用摸到紅球的次數(shù)除以試驗(yàn)次數(shù)即可求得摸到紅球的頻率;
(2)找到多次試驗(yàn)頻率逐漸穩(wěn)定到的常數(shù)即可求得概率;
(3)根據(jù)題意列出方程求解即可.
(1)a=571÷800≈0.71;
(2)觀察發(fā)現(xiàn)隨著實(shí)驗(yàn)次數(shù)的增多,摸到紅球的頻率逐漸穩(wěn)定在常數(shù)0.7附近,所以計(jì)從袋子中摸出一個(gè)球恰好是紅球的概率約為0.7;
(3)設(shè)袋子中除去紅球外,還有其他顏色的球x個(gè),根據(jù)題意得:
解得:x=3.
答:袋子中還有其他顏色的球3個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題探究】
已知:如圖①所示,∠MPN的頂點(diǎn)為P,⊙O的圓心O從頂點(diǎn)P出發(fā),沿著PN方向平移.
(1)如圖②所示,當(dāng)⊙O分別與射線PM,PN相交于A、B、C、D四個(gè)點(diǎn),連接AC、BD,可以證得△PAC∽△ , 從而可以得到:PAP B=P CP D.
(2)如圖③所示,當(dāng)⊙O與射線PM相切于點(diǎn)A,與射線PN相交于C、D兩個(gè)點(diǎn).求證:PA2=PCPD.
(3)【簡單應(yīng)用】
如圖④所示,(2)中條件不變,經(jīng)過點(diǎn)P的另一條射線與⊙O相交于E、F兩點(diǎn).利用上述(1),(2)兩問的結(jié)論,直接寫出線段PA與PE、PF之間的數(shù)量關(guān)系;當(dāng)PA=4 ,EF=2,則PE= .
(4)【拓展延伸】如圖⑤所示,在以O(shè)為圓心的兩個(gè)同心圓中,A、B是大⊙O上的任意兩點(diǎn),經(jīng)過A、B 兩點(diǎn)作線段,分別交小⊙O于C、E、D、F四個(gè)點(diǎn).求證:ACAE=BDBF.(友情提醒:可直接運(yùn)用本題上面所得到的相關(guān)結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架方梯AB長25米,如圖所示,斜靠在一面上:
(1)若梯子底端離墻7米,這個(gè)梯子的頂端距地面有多高?
(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動(dòng)了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形邊長為1的方格紙中,△的頂點(diǎn)都在方格紙格點(diǎn)上.將△向左平移2格,再向上平移4格.
(1)請(qǐng)?jiān)趫D中畫出平移后的△ ;
(2)圖中AC和的關(guān)系 ;
(3)再在圖中畫出△的高;
(4)= ;
(5)在圖中能使的格點(diǎn)的個(gè)數(shù)有 個(gè)(點(diǎn)異于C).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的 兩點(diǎn),AE=CF。
求證:(1)△ADF≌△CBE
(2)EB∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,三角形的三個(gè)頂點(diǎn)分別是, ,
(1)在所給的網(wǎng)格圖中,畫出這個(gè)平面直角坐標(biāo)系;
(2)點(diǎn)經(jīng)過平移后對(duì)應(yīng)點(diǎn)為,將三角形作同樣的平移得到三角形.
①畫出平移后的三角形;
②若邊上一點(diǎn)經(jīng)過上述平移后的對(duì)應(yīng)點(diǎn)為,用含,的式子表示點(diǎn)的坐標(biāo);(直接寫出結(jié)果即可)
③求三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)直接寫出當(dāng)0≤x≤300和x>300時(shí),y與x的函數(shù)關(guān)系式;
(2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要900元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要960元.
(1)求購進(jìn)甲、乙兩種花卉每盆各需多少元?
(2)該花店購進(jìn)甲,乙兩種花卉共100盆,甲種花卉每盆售價(jià)20元,乙種花齊每盆售價(jià)16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過480元,則至少購進(jìn)甲種花卉多少盆?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com