【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;

(2)連結(jié)AB,過點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D如果以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明;

(3)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)且位于AC兩點(diǎn)之間.問:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PAC的面積最大?求出△PAC的最大面積.

【答案】(1)y=-x2+2x-3;(2) 直線BD與⊙C相離.證明見解析;(3) P點(diǎn)的位置是(3, ),PAC的最大面積是.

【解析】

試題(1)根據(jù)頂點(diǎn)坐標(biāo)列出頂點(diǎn)式,再將C點(diǎn)坐標(biāo)代入即可;

2)先求出圓的半徑,再借助三角形相似,求出C到直線的距離,比較他們的大小即可;

3)過點(diǎn)作平行于軸的直線交于點(diǎn).設(shè)出點(diǎn)坐標(biāo),求出PQ的值,再表示出

的面積,借助函數(shù)關(guān)系式求出最值.

試題解析:(1拋物線的頂點(diǎn)為(4,1,

設(shè)拋物線解析式為.

拋物線經(jīng)過點(diǎn)6,0,

.

.

.

所以拋物線的解析式為;

(2)補(bǔ)全圖形、判斷直線BD相離

=0,,.

點(diǎn)坐標(biāo)(2,0.

拋物線交軸于點(diǎn),

∴A點(diǎn)坐標(biāo)為(0,-3,

.

設(shè)與對(duì)稱軸l相切于點(diǎn)F,的半徑CF=2,

⊥BD于點(diǎn)E,∠BEC=∠AOB=90°.

,

.

,

.

,

.

,

.

直線BD相離;

(3)如圖,過點(diǎn)作平行于軸的直線交于點(diǎn).

∵A0,-3,6,0.

直線解析式為.

設(shè)點(diǎn)坐標(biāo)為(,,

點(diǎn)的坐標(biāo)為(,.

∴PQ=-()=.

,

當(dāng)時(shí),的面積最大為

當(dāng)時(shí),=

點(diǎn)坐標(biāo)為(3,.

綜上:點(diǎn)的位置是(3,,的最大面積是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EFAB于點(diǎn)E,交AC于點(diǎn)F.DBC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則BDM的周長(zhǎng)的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)設(shè)方程①的兩個(gè)實(shí)數(shù)根分別為x1,x2,當(dāng)k=1時(shí),求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn),點(diǎn)分別在軸正半軸和負(fù)半軸上,

1)如圖1,若,,求的度數(shù);

2)在內(nèi)作射線,,分別與過點(diǎn)的直線交于第一象限內(nèi)的點(diǎn)和第三象限內(nèi)的點(diǎn)

①如圖2,若,恰好分別平分,求的值;

②若,,當(dāng),則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線).繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得到條折痕,那么對(duì)折四次可以得到( )條折痕.如果對(duì)折次, 可以得到( )條折痕

A.,B.,C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為□ABCD的對(duì)角線,按要求完成下列各題.

(1)用直尺和圓規(guī)作出對(duì)角線BD的垂直平分線交AD于點(diǎn)E,交BC于點(diǎn)F,垂足為O.(保留作圖痕跡,不要求寫作法)

(2)在(1)的基礎(chǔ)上,連接BE和DF.求證:四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)C作CEBD,過點(diǎn)D作DEAC,CE與DE相交于點(diǎn)E.

(1)求證:四邊形CODE是矩形;

(2)若AB=10,AC=12,求四邊形CODE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90°,BAC=60°,AB=6,RtAB'C'可以看作是由RtABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)60°得到的,則線段B'C的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是高,是角平分線,,

)求的度數(shù).

)若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________

當(dāng),時(shí),則__________

當(dāng)時(shí),則__________

當(dāng)時(shí),則__________

)若的度數(shù)改為用字母來表示,你能找到之間的關(guān)系嗎?請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案