【題目】閱讀下列材料并解決有關(guān)問題:我們知道|x|=,現(xiàn)在我們可以用這個結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別叫做|x+1|與|x﹣2|的零點值.)在有理數(shù)范圍內(nèi),零點值x=﹣1和x=2可將全體有理數(shù)分成不重復且不遺漏的如下3種情況:
(1)當x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
(2)當﹣1≤x≤2時,原式=x+1﹣(x﹣2)=3;
(3)當x>2時,原式=x+1+x﹣2=2x﹣1.
綜上所述,原式=.
通過以上閱讀,請你解決以下問題:
(1)分別求出|x+2|和|x﹣4|的零點值;
(2)化簡代數(shù)式|x+2|+|x﹣4|;
(3)求方程:|x+2|+|x﹣4|=6的整數(shù)解;
(4)|x+2|+|x﹣4|是否有最小值?如果有,請直接寫出最小值;如果沒有,請說明理由.
【答案】(1)﹣2,4分別為|x+2|和|x﹣4|的零點值;(2)當x<﹣2時,﹣2x+2;當﹣2≤x<4時, 6;當x≥4時, 2x﹣2;(3)整數(shù)解為:﹣2,﹣1,0,1,2,3,4;(4)有,|x+2|+|x﹣4|的最小值是6.
【解析】
(1)根據(jù)題中所給材料,求出零點值;
(2)將全體實數(shù)分成不重復且不遺漏的三種情況解答;
(3)由|x+2|+|x-4|=6,得到-2≤x≤4,于是得到結(jié)果;
(4)|x+2|+|x-4|有最小值,通過x的取值范圍即可得到結(jié)果.
(1)∵|x+2|和|x﹣4|的零點值,可令x+2=0和x﹣4=0,解得x=﹣2和x=4,
∴﹣2,4分別為|x+2|和|x﹣4|的零點值.
(2)當x<﹣2時,|x+2|+|x﹣4|=﹣2x+2;
當﹣2≤x<4時,|x+2|+|x﹣4|=6;
當x≥4時,|x+2|+|x﹣4|=2x﹣2;
(3)∵|x+2|+|x﹣4|=6,
∴﹣2≤x≤4,
∴整數(shù)解為:﹣2,﹣1,0,1,2,3,4.
(4)|x+2|+|x﹣4|有最小值,
∵當x=﹣2時,|x+2|+|x﹣4|=6,
當x=4時,|x+2|+|x﹣4|=6,
∴|x+2|+|x﹣4|的最小值是6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1中ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.
圖1 圖2
(1)求證:BE=EF;
(2)若將DE從中位線的位置向上平移,使點D、E分別在線段AB、AC上(點E與點A不重合),其他條件不變,如圖2,則(1)題中的結(jié)論是否成立?若成立,請證明;若不成立.請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上有三點分別表示數(shù),且滿足.兩只電子螞蟻甲、乙分別從兩點同時出發(fā)相向而行,若甲的速度為個單位/秒,乙的速度為個單位/秒.
(1)求的值并在數(shù)軸上標出三點.
(2)問甲、乙在數(shù)軸上的哪個點相遇?
(3)問多少秒后,甲到的距離為個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,則△FCD的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】化簡題.
(1)合并下列同類項: 4a2-3b2+2ab-4a2-3b2+5ba
(2)先化簡,再求值:2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中|x﹣1|+(y+2)2=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:我們知道,4x+2x-x=(4+2-1)x=5x,類似地,我們把(a+b)看成一個整體,則4(a+b)+2(a+b)-(a+b)-(4+2-1)(a+b)=5(a+b).“整體思想”是中學教學解題中的一種重要的思想方法,它在多項式的化簡與求值中應(yīng)用極為廣泛.
嘗試應(yīng)用:
(1)把(a-b)看成一個整體,合并3(a-b)2-7(a-b)2+2(a-b)2的結(jié)果是____________.
(2)已知x2-2y=5,求21-x2+y的值;
(3)拓廣探索:已知a-2b=3,2b-c=-5,c-d=10,求2(a-c)+2(2b-d)-2(2b-c)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P是菱形ABCD的對角線AC上的一個動點,已知AB=1,∠ADC=120°, 點M,N分別是AB,BC邊上的中點,則△MPN的周長最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū). 已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市. 已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設(shè)從C市運往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤恚?/span>
(2)設(shè)C、D兩市的總運費為W元,求W與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從C市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少n元(n>0),其余路線運費不變,若C、D兩市的總運費的最小值不小于10080元,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加射箭比賽,兩人各射了5箭,他們的成績(單位:環(huán))統(tǒng)計如下表.
第1箭 | 第2箭 | 第3箭 | 第4箭 | 第5箭 | |
甲成績 | 9 | 4 | 7 | 4 | 6 |
乙成績 | 7 | 5 | 6 | 5 | 7 |
(1)分別計算甲、乙兩人射箭比賽的平均成績;
(2)你認為哪個人的射箭成績比較穩(wěn)定?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com