【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2B,O的切線APOC的延長線相交于點P,若PA= 6cm,求AC的長.

四、綜合題(10分)

【答案】6cm.

【解析】試題分析: AB是⊙O的直徑和∠BAC=2B,根據(jù)圓周角定理和三角形內(nèi)角和定理可得∠BAC=600,等邊三角形的判定知△OAC是等邊三角形,PA是⊙O的切線得

RtOAP,PA=6cm,AOP=60°,從而應(yīng)用銳角三角函數(shù)即可求得OA=AC的長.

試題解析:∵AB是⊙O直徑, ∴∠ACB=90°,

∵∠BAC=2B,

∴∠B=30°,BAC=60°,

OA=OC,

∴△AOC是等邊三角形,

∴∠AOC=60°,AC=OA,

PA是⊙O切線,

∴∠OAP=90°,

RtOAP,PA=6cm,AOP=60°,

OA= =6cm,

AC=OA=6cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】中,是直線上一點,以為一邊在的右側(cè)作,使,,連接.設(shè).

(1)如圖(1),點在線段上移動時,試說明;

(2)如圖(2),點在線段的延長線上移動時,探索角之間的數(shù)量關(guān)系并證明;

(3)當點在線段的反向延長線上移動時,請在備用圖上根據(jù)題意畫出圖形,并猜想角之間的數(shù)量關(guān)系是______________,線段之間的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(2,4),點B的坐標為(3,0).三角形AOB中任意一點P(x0,y0)經(jīng)平移后的對應(yīng)點為P1(x0+2,y0),并且點A,O,B的對應(yīng)點分別為點D,E,F(xiàn).

(1)指出平移的方向和距離;

(2)畫出平移后的三角形DEF;

(3)求線段OA在平移過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AG是正八邊形ABCDEFGH的一條對角線.

(1)在剩余的頂點B、C、D、E、F、H中,連接兩個頂點,使連接的線段與AG平行,并說明理由;

(2)兩邊延長AB、CD、EF、GH,使延長線分別交于點P、Q、M、N,若AB=2,求四邊形PQMN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點EADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.

(1)求證:CD與⊙O相切;

(2)BF24OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要把殘破的輪片復(fù)制完整,已知弧上的三點A、B、C.

(1)用尺規(guī)作圖法找出所在圓的圓心(保留作圖痕跡,不寫作法);

(2)設(shè)△ABC是等腰三角形,底邊BC=8cm,腰AB=5cm,求圓片的半徑R.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CE是圓O的直徑,點B在圓O上由點E順時針向點C運動(點B不與點E、C重合),弦BDCE于點F,且BD=BC,過點B作弦CD的平行線與CE的延長線交于點A.

(1)若圓O的半徑為2,且點D為弧EC的中點時,求圓心O到弦CD的距離;

(2)當DFDB=CD2時,求∠CBD的大。

(3)若AB=2AE,且CD=12,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各句判定矩形的說法對角線相等的四邊形是矩形;對角線互相平分且相等的四邊形是矩形;有一個角是直角的四邊形是矩形;有四個角是直角的四邊形是矩形;四個角都相等的四邊形是矩形;對角線相等,且有一個角是直角的四邊形是矩形;是正確有幾個

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案