【題目】將等腰三角形折疊,使頂點(diǎn)與底邊的中點(diǎn)重合,折線(xiàn)分別交、于點(diǎn)、,連接、.
(1)如圖1,求證:四邊形是菱形;
(2)如圖2,延長(zhǎng)至點(diǎn),使,連接,并延長(zhǎng)交的延長(zhǎng)線(xiàn)于點(diǎn),在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖2中的所有平行四邊形(不包括以為一邊的平行四邊形)
【答案】(1)見(jiàn)解析;(2);;;;
【解析】
(1)連接BD,交EF于點(diǎn)O,利用已知條件和折疊的性質(zhì)證明BE=BF和EF與BD垂直平分,即可證明四邊形DFBE是菱形;
(2)根據(jù)平行四邊形的各種判定方法即可直接寫(xiě)出圖2中的所有平行四邊形.
解:證明:(1)如圖1,連接,交于點(diǎn),
∵,點(diǎn)是的中點(diǎn),
∴,,
由折疊可知,,
∴,
∴,
∴與垂直平分,
∴四邊形是菱形;
(2)由(1)以及構(gòu)圖過(guò)程可知:
圖2中共有五個(gè)平行四邊形(不包括以為一邊的平行四邊形).
分別是;;;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,1),在x軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)共有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t=________分鐘時(shí)甲乙兩人相遇,甲的速度為________米/分鐘;
(2)求出線(xiàn)段AB所表示的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有五張背面相同的卡片,正面分別印有圓、矩形、等邊三角形、菱形、平行四邊形(鄰邊不相等且不垂直),現(xiàn)將五張卡片正面朝下洗勻任意擺放,從中隨機(jī)抽取兩張,抽到的兩張卡片上都恰好印的既是中心對(duì)稱(chēng)又是軸對(duì)稱(chēng)的圖形的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)y=﹣x+4與x軸交于點(diǎn)A,過(guò)點(diǎn)A的拋物線(xiàn)y=ax2+bx與直線(xiàn)y=﹣x+4交于另一點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.
(1)該拋物線(xiàn)的解析式為;
(2)如圖1,Q為拋物線(xiàn)上位于直線(xiàn)AB上方的一動(dòng)點(diǎn)(不與B、A重合),過(guò)Q作QP⊥x軸,交x軸于P,連接AQ,M為AQ中點(diǎn),連接PM,過(guò)M作MN⊥PM交直線(xiàn)AB于N,若點(diǎn)P的橫坐標(biāo)為t,點(diǎn)N的橫坐標(biāo)為n,求n與t的函數(shù)關(guān)系式;在此條件下,如圖2,連接QN并延長(zhǎng),交y軸于E,連接AE,求t為何值時(shí),MN∥AE.
(3)如圖3,將直線(xiàn)AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)15度交拋物線(xiàn)對(duì)稱(chēng)軸于點(diǎn)C,點(diǎn)T為線(xiàn)段OA上的一動(dòng)點(diǎn)(不與O、A重合),以點(diǎn)O為圓心、以OT為半徑的圓弧與線(xiàn)段OC交于點(diǎn)D,以點(diǎn)A為圓心、以AT為半徑的圓弧與線(xiàn)段AC交于點(diǎn)F,連接DF.在點(diǎn)T運(yùn)動(dòng)的過(guò)程中,四邊形ODFA的面積有最大值還是有最小值?請(qǐng)求出該值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AB<AD.
(1)利用尺規(guī)作圖作出∠ABC的角平分線(xiàn)BG,交AD于點(diǎn)E,記點(diǎn)A關(guān)于BE對(duì)稱(chēng)點(diǎn)為F(要求保留作圖痕跡,不寫(xiě)作法);
(2)在(1)所作的圖中,若AF=6,AB=5,求BE的長(zhǎng)和四邊形ABFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸分別相交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)P.
(1)求拋物線(xiàn)的解析式;
(2)動(dòng)點(diǎn)M、N從點(diǎn)O同時(shí)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別在線(xiàn)段OB、OC上向點(diǎn)B、C方向運(yùn)動(dòng),過(guò)點(diǎn)M作x軸的垂線(xiàn)交BC于點(diǎn)F,交拋物線(xiàn)于點(diǎn)H.
①當(dāng)四邊形OMHN為矩形時(shí),求點(diǎn)H的坐標(biāo);
②是否存在這樣的點(diǎn)F,使△PFB為直角三角形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如圖,在△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線(xiàn);
(2)若BD=,BF=2,求陰影部分的面積 (直接填空).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com