【題目】如圖,如圖,在ABC中,C=90°,BAC的平分線交BC于點D,點OAB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,交AC于點E,交AB于點F

1)求證:BC是⊙O的切線;

2)若BD=,BF=2,求陰影部分的面積    (直接填空)

【答案】1證明見解析;(2

【解析】

1)連接OD,利用角平分線和平行線之間的角度關(guān)系,得到OD//AC,所以ODBC,從而得出BC與⊙O相切;

2)利用直角三角形的勾股定理解得圓的半徑,將陰影部分的面積轉(zhuǎn)化為三角形面積與扇形面積之差,從而計算出陰影部分的面積.

1證明:如圖,連接OD,

OA=OD,

∴∠OAD=ODA

AD平分∠BAC,

∴∠CAD=OAD

∴∠CAD=ODA,

ACOD,

∴∠ODB=C=90°,

OD是⊙O的半徑,

BC是⊙O的切線;

2設(shè)⊙O的半徑為r,則OD=r,OB=r+2

由(1)可知∠BDO=90°,

RtBDO中,根據(jù)勾股定理可得:OD2+BD2=OB2,

r2+2=(r+2)2,

解得:r=2

RtBOD中,tanBOD=,

∴∠BOD=60°,

故陰影部分的面積為:

S陰影=SOBD-S扇形DOF=×OD×BD-

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將等腰三角形折疊,使頂點與底邊的中點重合,折線分別交于點、,連接、

1)如圖1,求證:四邊形是菱形;

2)如圖2,延長至點,使,連接,并延長的延長線于點,在不添加任何輔助線的情況下,請直接寫出圖2中的所有平行四邊形(不包括以為一邊的平行四邊形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2x+2與x軸交于點A,B兩點,交y軸于C點,拋物線的對稱軸與x軸交于H點,分別以OC、OA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點,在對稱軸上有一動點M,當四邊形AOCP面積最大時,求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點A′、C'在直線AC上,是否存在這樣的點D′,使得△AED′為直角三角形?若存在,請求出點D′的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品千克.

1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用(元)與(千克)之間的函數(shù)關(guān)系式;

2)若小明快遞的物品超過1千克,則他應選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,以下列結(jié)論正確的是(  )

;;;(m為任意實數(shù))

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“南昌之星”摩天輪,位于江西省南昌市紅谷灘新區(qū)紅角洲贛江邊上的贛江市民公園,摩天輪高(最高點到地面的距離).如圖,點是摩天輪的圓心,是其垂直于地面的直徑,小賢在地面點處利用測角儀測得摩天輪的最高點的仰角為,測得圓心的仰角為,則摩天輪的半徑為________(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線=為任意實數(shù))

1)無論取何值,拋物線恒過兩點________,________

2)當時,設(shè)拋物線在第一象限依次經(jīng)過整數(shù)點(橫、縱坐標均為整數(shù)的點)為,.將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過點的頂點為,例如時,拋物線經(jīng)過點,頂點為

拋物線的解析式為________;頂點坐標為________;

在拋物線上是否存在點,使得?若存在,求出點的坐標,并判斷四邊形的形狀;若不存在,請說明理由.

直接寫出線段的長________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去年4月,過敏體質(zhì)檢測中心等機構(gòu)開展了青少年形體測評,專家組隨機抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答些列問題:

1)請將兩幅圖補充完整;

2)如果全市有10萬名初中生,那么全市初中生中,三姿良好的學生約有   人.

3)根據(jù)統(tǒng)計結(jié)果,請你簡單談談自己的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備從體育用品商店一次性購買若干個籃球和足球(每個籃球的價格相同,每個足球的價格也相同).若購買個籃球和個足球共需元,購買個籃球和個足球共需元.

1)購買一個籃球、一個足球各需多少元?

2)根據(jù)該中學的實際情況,需從體育用品商店一次性購買籃球和足球共個.要求購買總金額不能超過元,則最多能購買多少個籃球?

查看答案和解析>>

同步練習冊答案