分析 連接PB、PC,根據(jù)角平分線上的點到角的兩邊距離相等可得PM=PN,線段垂直平分線上的點到線段兩端點的距離相等可得PC=PB,然后利用“HL”證明Rt△PMC和Rt△PNB全等,根據(jù)全等三角形對應(yīng)邊相等證明即可.
解答 證明:如圖,連接PB,PC,
∵AP是∠BAC的平分線,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分線上,
∴PC=PB,
在Rt△PMC和Rt△PNB中,
$\left\{\begin{array}{l}{PC=PB}\\{PM=PN}\end{array}\right.$,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
點評 本題考查了全等三角形的判定與性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),熟記各性質(zhì)并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com