【題目】解下列方程。

1x2-5x+6=0

2(2x1)(x4)5.

【答案】1x1=2,x2=3;(2X1=x2=1

【解析】

1)將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解;

2)首先把方程化為一般形式,利用公式法即可求解.

解:(1x2-5x+6=0

x2(x-3)=0

x-2=0x-3=0

x1=2 x2=3

2)解:(2)(2x1)(x4)5.

2x2-7x-9=0

a=2 b=-7 c=-9

= (-7)24×2×(-9)=1210.

所以方程有兩個不相等的實根

X==

X1=x2=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,為對角線上異于點的一個動點,聯(lián)結,沿所在的直線翻折,使得點落在點的位置

1)當時,求點到直線的距離。

2)聯(lián)結,求當相似時,線段的長。

3)當時,請直接寫出此時的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-2x與反比例函數(shù)y=(k<0)的圖象交于A,B兩點,點P在以C(2,0)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最小值為,則k的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】銳角ΔABC中,BC=6,SΔABC=12,兩動點M,N分別在邊ABAC上滑動,且MNBC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQNΔABC公共部分的面積為y(y>0)

(1)ΔABC中邊BC上高AD=______.

(2)x=______時,PQ恰好落在邊BC(如圖1).

(3)PQΔABC外部時(如圖2),求y關于x的函數(shù)關系式.(注明x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖2 - 4所示,長方形ABCD的長為5 cm,寬為4 cm,如果將它的長和寬都減去x(cm),那么它剩下的小長方形AB′C′D′的面積為y(cm2)

(1)寫出yx的函數(shù)關系式;

(2)上述函數(shù)是什么函數(shù)?

(3)自變量x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個相等的實數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元.為了擴大銷售量,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.

(1)若每件襯衫降價4元,商場每天可盈利多少元?

(2)若商場平均每天要盈利1200元,每件襯衫應降價多少元?

查看答案和解析>>

同步練習冊答案