【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,AB=4,點(diǎn)P是線段AD上的動(dòng)點(diǎn),連接BP,CP,若△BPC周長的最小值為16,則BC的長為( 。
A.5B.6C.8D.10
【答案】B
【解析】
作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)E,連接CE交AD于P,則AE=AB=4,EP=BP,設(shè)BC=x,則CP+BP=16﹣x=CE,依據(jù)Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,進(jìn)而得出BC的長.
解:如圖所示,作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)E,連接CE交AD于P,則AE=AB=4,EP=BP,
設(shè)BC=x,則CP+BP=16﹣x=CE,
∵∠BAD=90°,AD∥BC,
∴∠ABC=90°,
∴Rt△BCE中,EB2+BC2=CE2,
∴82+x2=(16﹣x)2,
解得x=6,
∴BC=6,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=∠C=65°,BD=CE,BE=CF,若∠A=50°,則∠DEF的度數(shù)是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB=2,BC=1,CD=2,AD=3,連接AC.
(1)求AC的長;
(2)判斷三角形ACD的形狀,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字l的小球的概率為 .
(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC邊長為10,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合).直線1是經(jīng)過點(diǎn)P的一條直線,把△ABC沿直線1折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′.
(1)如圖1,當(dāng)PB=5時(shí),若點(diǎn)B′恰好在AC邊上,求AB′的長度;
(2)如圖2,當(dāng)PB=8時(shí),若直線1∥AC,求BB′的長度;
(3)如圖3,點(diǎn)P在AB邊上運(yùn)動(dòng)過程中,若直線1始終垂直于AC,△ACB′的面積是否變化?若變化,說明理由;若不變化,求出面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=3,BC=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來的速度沿AB返回.點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位長度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)它們的運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)設(shè)△CBQ的面積為S,請(qǐng)用含有t的代數(shù)式來表示S;
(2)線段PQ的垂直平分線記為直線l,當(dāng)直線l經(jīng)過點(diǎn)C時(shí),求AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延長線交BF于E,且E為垂足,則結(jié)論①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正確的結(jié)論的個(gè)數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從A港出發(fā),以28海里/小時(shí)的速度向正北方向航行,此時(shí)測(cè)的燈塔M在北偏東30°的方向上.半小時(shí)后,輪船到達(dá)B處,此時(shí)測(cè)得燈塔M在北偏東60°的方向上.
(1)求輪船在B處時(shí)與燈塔M的距離;
(2)輪船從B處繼續(xù)沿正北方向航行,又經(jīng)半小時(shí)后到達(dá)C處.求:此時(shí)輪船與燈塔M的距離是多少?燈塔M在輪船的什么方向上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com