【題目】小明騎自行車去郊外春游,他離家的距離y(千米)與所用時間x(小時)之間的關(guān)系如圖,根據(jù)圖象回答:
(1)小明到達離家最遠的地方需幾小時?此時離家多遠?
(2)小明出發(fā)兩個半小時時離家多遠?
(3)小明出發(fā)多長時間離家12.5千米?
【答案】(1)小明到達離家最遠的地方需3小時;此時他離家30千米;(2)出發(fā)兩個半小時,小明離家22.5千米;(3)小明出發(fā)小時或小時距家12.5千米.
【解析】
(1)根據(jù)分段函數(shù)的圖象上點的坐標(biāo)的意義可知:小明到達離家最遠的地方需3小時;此時,他離家30千米;
(2)因為C(2,15)、D(3,30)在直線上,運用待定系數(shù)法求出解析式后,把x=2.5代入解析式即可;
(3)分別利用待定系數(shù)法求得過E、F兩點的直線解析式,以及A、B兩點的直線解析式.分別令y=12.5,求解x即可.
解:(1)由圖象可知小明到達離家最遠的地方需3小時;此時,他離家30千米;
(2)設(shè)直線CD的解析式為y=k1x+b1,由C(2,15)、D(3,30),
代入得:y=15x-15,(2≤x≤3),
當(dāng)x=2.5時,y=22.5(千米);
答:出發(fā)兩個半小時,小明離家22.5千米;
(3)設(shè)過E、F兩點的直線解析式為y=k2x+b2,
由E(4,30)、F(6,0),代入得y=-15x+90,(4≤x≤6)
過A、B兩點的直線解析式為y=k3x,
∵B(1,15),
∴y=15x(0≤x≤1);
當(dāng)時,
,解得:;
,解得:;
答:小明出發(fā)小時或小時距家12.5千米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元一次方程的解是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.
(1)在方程①x﹣(3x+1)=﹣5;②+1=0;③3x﹣1=0 中,不等式組的關(guān)聯(lián)方程是 (填序號);
(2)若不等式組的某個關(guān)聯(lián)方程 2x-m=1 的解是整數(shù), 求 m 的值;
(3)若方程﹣ x= x,3+x=2(x+ )都是關(guān)于 x 的不等式組的關(guān)聯(lián)方程,直接寫出 m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為160元,200元的A、B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入/元 | |
A種型號/臺 | B種型號/臺 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B兩種型號的電風(fēng)扇的銷售單價是多少?
(2)若該超市準(zhǔn)備用不多于5400元的金額再次采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中, AB=10,AD=5 ,CD=12.連接AC,若AC=BC=13,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列資料,解決問題:
定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,如:,這樣的分式就是真分式;當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”,如:這樣的分式就是假分式,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:.
(1)分式是 (填“真分式”或“假分式”);
(2)將假分式分別化為帶分式;
(3)如果分式的值為整數(shù),求所有符合條件的整數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點,則y1>y2.
其中說法正確的是( 。
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在在平面直角坐標(biāo)系xOy中,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,得到等腰直角三角形A2019OB2019,則點A2019的坐標(biāo)為_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過B點作BM⊥AC于點E,交CD于點M,過D點作DN⊥AC于點F,交AB于點N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com