如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y=(x>0)的圖象經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.

(1)k=3,點(diǎn)縱坐標(biāo)為(2,);(2).

解析試題分析:(1)根據(jù)題意易知D(1,3),把D(1,3)代入y=,從而求出k=3;然后把E點(diǎn)的橫坐標(biāo)代入y=,求出y的值,從而確定E點(diǎn)坐標(biāo);
(2)由(1)易求出BD、BE、BC的值,因?yàn)椤鱂BC∽△DEB,根據(jù)相似三角形的性質(zhì),可求出DF的值,從而確定F點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法可求出FB的直線解析式.
試題解析:(1)在矩形OABC中, ∵B點(diǎn)坐標(biāo)為(2,3),
∴BC邊中點(diǎn)D的坐標(biāo)為(1,3)
又∵雙曲線y=的圖像經(jīng)過(guò)點(diǎn)D(1,3)
,
∴k=3
∵E點(diǎn)在AB上,
∴E點(diǎn)的橫坐標(biāo)為2.
又∵y=,經(jīng)過(guò)點(diǎn)E,
∴E點(diǎn)縱坐標(biāo)為,
∴E點(diǎn)縱坐標(biāo)為(2,
(2)由(1)得,BD=1,BE=,BC=2,
∵△FBC∽△DEB,
,即.
,
,即點(diǎn)F的坐標(biāo)為
設(shè)直線FB的解析式為,而直線FB經(jīng)過(guò)B(2,3),F(xiàn)(0,
,解得
∴直線FB的解析式為
考點(diǎn): 一次函數(shù)與反比例函數(shù)的綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

畫出函數(shù)y=﹣x+1的圖象,結(jié)合圖象,回答下列問(wèn)題.
在函數(shù)y=﹣x+1的圖象中:
(1)畫出函數(shù)圖象并寫出與x軸的交點(diǎn)坐標(biāo)是 _________ ;
(2)隨著x的增大,y將 _________ (填“增大”或“減小”);
(3)當(dāng)y取何值時(shí),x<0? _________ 
(4)把它的圖象向下平移2個(gè)單位長(zhǎng)度則得到的新的一次函數(shù)解析式是 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

張先生準(zhǔn)備在沙坪壩購(gòu)買一套小戶型商品房,他去某樓盤了解情況得知, 該戶型商品房的單價(jià)是8000元/,面積如圖所示(單位:米,衛(wèi)生間的寬未定,設(shè)寬為米),售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價(jià)是8000元/,其中廚房可免費(fèi)贈(zèng)送的面積;
方案二:整套房按原銷售總金額的9折出售.
(1)用表示方案一中購(gòu)買一套該戶型商品房的總金額,用表示方案二中購(gòu)買一套該戶型商品房的總金額,分別求出的關(guān)系式;
(2)求取何值時(shí),兩種優(yōu)惠方案的總金額一樣多?
(3)張先生因現(xiàn)金不夠,于2012年1月在建行借了9萬(wàn)元住房貸款,貸款期限為6年,從開(kāi)始貸款的下一個(gè)月起逐月償還,貸款月利率是0.5%,每月還款數(shù)額=平均每月應(yīng)還的貸款本金數(shù)額+月利息,月利息=上月所剩貸款本金數(shù)額×月利率.
①?gòu)埾壬杩詈蟮谝粋(gè)月應(yīng)還款數(shù)額是多少元?
②假設(shè)貸款月利率不變,若張先生在借款后第,是正整數(shù))個(gè)月的還款數(shù)額為P,請(qǐng)寫出P與之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一次函數(shù)y=kx+b,當(dāng)x=2時(shí),y=﹣3,當(dāng)x=1時(shí),y=﹣1.
(1)求一次函數(shù)的解析式;
(2)若該一次函數(shù)的圖形交x軸y軸分別于A、B兩點(diǎn),求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某工廠計(jì)劃用庫(kù)存的302m3木料為某學(xué)校生產(chǎn)500套桌椅,供該校1250名學(xué)生使用,該廠生產(chǎn)的桌椅分為A,B兩種型號(hào),有關(guān)數(shù)據(jù)如下:

桌椅型號(hào)
一套桌椅所坐學(xué)生人數(shù)(單位:人)
生產(chǎn)一套桌椅所需木材(單位:m3
一套桌椅的生產(chǎn)成本(單位:元)
一套桌椅的運(yùn)費(fèi)(單位:元)
A
2
0.5
100
2
B
3
0.7
120
4
 
設(shè)生產(chǎn)A型桌椅x(套),生產(chǎn)全部桌椅并運(yùn)往該校的總費(fèi)用(總費(fèi)用=生產(chǎn)成本+運(yùn)費(fèi))為y元.
(1)求y與x之間的關(guān)系式,并指出x的取值范圍;
(2)當(dāng)總費(fèi)用y最小時(shí),求相應(yīng)的x值及此時(shí)y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點(diǎn)A(-2,0),與y軸交于點(diǎn)C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)B(m,n),連結(jié)OB.若SAOB=6,SBOC=2.
(1)求一次函數(shù)的表達(dá)式;
(2)求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O坐標(biāo)原點(diǎn),直線l分別交x軸、y軸于A,B兩點(diǎn),OA<OB,且OA、OB的長(zhǎng)分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點(diǎn)P是y軸上的點(diǎn),點(diǎn)Q第一象限內(nèi)的點(diǎn).若以A、B、P、Q為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

溫州享有“中國(guó)筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,各地的運(yùn)費(fèi)如圖所示.設(shè)安排x件產(chǎn)品運(yùn)往A地.
(1)當(dāng)n=200時(shí),
①根據(jù)信息填表:

 
A地
B地
C地
合計(jì)
產(chǎn)品件數(shù)(件)
x
 
2x
200
運(yùn)費(fèi)(元)
30x
  
 
 
 
②若運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過(guò)4000元,則有哪幾種運(yùn)輸方案?
(2)若總運(yùn)費(fèi)為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的部分關(guān)系.那么,從關(guān)閉進(jìn)水管起     分鐘該容器內(nèi)的水恰好放完.

查看答案和解析>>

同步練習(xí)冊(cè)答案