【題目】(2013年浙江義烏10分)小明合作學習小組在探究旋轉、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點坐標分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(,).
(1)他們將△ABC繞C點按順時針方向旋轉450得到△A1B1C.請你寫出點A1,B1的坐標,并判斷A1C和DF的位置關系;
(2)他們將△ABC繞原點按順時針方向旋轉450,發(fā)現旋轉后的三角形恰好有兩個頂點落在拋物線上.請你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現將△ABC繞某個點旋轉45,若旋轉后的三角形恰好有兩個頂點落在拋物線上,則可求出旋轉后三角形的直角頂點P的坐標.請你直接寫出點P的所有坐標.
【答案】解:(1)。
A1C和DF的位置關系是平行。
(2)∵△ABC繞原點按順時針方向旋轉45°后的三角形即為△DEF,
∴①當拋物線經過點D、E時,根據題意可得:,解得。
∴。
②當拋物線經過點D、F時,根據題意可得:,解得。
∴。
③當拋物線經過點E、F時,根據題意可得:,解得。
∴。
(3)在旋轉過程中,可能有以下情形:
①順時針旋轉45°,點A、B落在拋物線上,如答圖1所示,
易求得點P坐標為(0,)。
②順時針旋轉45°,點B、C落在拋物線上,如答圖2所示,
設點B′,C′的橫坐標分別為x1,x2,
易知此時B′C′與一、三象限角平分線平行,∴設直線B′C′的解析式為y=x+b。
聯立y=x2與y=x+b得:x2=x+b,即,∴。
∵B′C′=1,∴根據題意易得:,∴,即。
∴,解得。
∴,解得x或。
∵點C′的橫坐標較小,∴。
當時,。
∴P(,)。
③順時針旋轉45°,點C、A落在拋物線上,如答圖3所示,
設點C′,A′的橫坐標分別為x1,x2.
易知此時C′A′與二、四象限角平分線平行,∴設直線C′A′的解析式為。
聯立y=x2與得:,即,∴。
∵C′A′=1,∴根據題意易得:,∴,即。
∴,解得。
∴,解得x或。
∵點C′的橫坐標較大,∴。
當時,。
∴P(,)。
④逆時針旋轉45°,點A、B落在拋物線上.
因為逆時針旋轉45°后,直線A′B′與y軸平行,因為與拋物線最多只能有一個交點,故此種情形不存在。
⑤逆時針旋轉45°,點B、C落在拋物線上,如答圖4所示,
與③同理,可求得:P(,)。
⑥逆時針旋轉45°,點C、A落在拋物線上,如答圖5所示,
與②同理,可求得:P(,)。
綜上所述,點P的坐標為:(0,),(,),P(,,(,)。
【解析】
(1)由旋轉性質及等腰直角三角形邊角關系求解。
(2)首先明確△ABC繞原點按順時針方向旋轉45°后的三角形即為△DEF,然后分三種情況進行討論,分別計算求解。
(3)旋轉方向有順時針、逆時針兩種可能,落在拋物線上的點有點A和點B、點B和點C、點C和點D三種可能,因此共有六種可能的情形,需要分類討論,避免漏解。
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分別是AB和BC上的點.把△ABC沿著直線DE折疊,頂點B對應點是點B′
(1)如圖1,點B′恰好落在線段AC的中點處,求CE的長;
(2)如圖2,點B′落在線段AC上,當BD=BE時,求B′C的長;
(3)如圖3,E是BC的中點,直接寫出AB′的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當三角板繞點C旋轉到CD與OA垂直時(如圖①),易證:OD+OE=OC;
當三角板繞點C旋轉到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數量關系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統計數據:
摸球的次數 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數 | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計當很大時,摸到白球的頻率將會接近 (精確到0.1);
(2)假如摸一次,摸到黑球的概率 ;
(3)試估算盒子里黑顏色的球有多少只.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,將BD向兩個方向延長,分別至點E和點F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,求菱形AECF的邊長和面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數y=ax2+bx的解析式;
(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統計的這組數據的平均數、眾數和中位數;
(Ⅲ) 根據樣本數據,估計這2500只雞中,質量為的約有多少只?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C在同一直線上,△ABD,△BCE都是等邊三角形.
(1)求證:AE=CD;
(2)若M,N分別是AE,CD的中點,試判斷△BMN的形狀,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com