某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計(jì)劃用它們生產(chǎn)A、B兩種產(chǎn)品共50件,已知每生產(chǎn)一件A種產(chǎn)品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產(chǎn)一件B種產(chǎn)品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產(chǎn)A、B兩種產(chǎn)品,有哪幾種不同的方案?
(2)設(shè)生產(chǎn)兩種產(chǎn)品總利潤為y(元),其中生產(chǎn)A中產(chǎn)品x(件),試寫出y與x之間的函數(shù)解析式.
(3)利用函數(shù)性質(zhì)說明,采用(1)中哪種生產(chǎn)方案所獲總利潤最大?最大利潤是多少?
(1)符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;(2);(3)第一種方案,45000.

試題分析:(1)關(guān)系式為:A種產(chǎn)品需要甲種原料數(shù)量+B種產(chǎn)品需要甲種原料數(shù)量≤360;A種產(chǎn)品需要乙種原料數(shù)量+B種產(chǎn)品需要乙種原料數(shù)量≤290,把相關(guān)數(shù)值代入即可;解不等式,得到關(guān)于x的范圍,根據(jù)整數(shù)解可得相應(yīng)方案
(2)總獲利=700×A種產(chǎn)品數(shù)量+1200×B種產(chǎn)品數(shù)量;
(3)根據(jù)函數(shù)的增減性和(1)得到的取值可得最大利潤.
試題解析:(1);解第一個(gè)不等式得:,解第二個(gè)不等式得:,∴,∵為正整數(shù),∴=30、31、32,∴50﹣30=20,50﹣31=19,50﹣32=18,∴符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;
(2),
(3)∵,﹣500<0,而,∴當(dāng)越小時(shí),總利潤越大,即當(dāng)時(shí),最大利潤為:元.∴生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件使生產(chǎn)A、B兩種產(chǎn)品的總獲利最大,最大利潤是45000元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為表彰在某活動(dòng)中表現(xiàn)積極的同學(xué),老師決定購買文具盒與鋼筆作為獎(jiǎng)品.已知5個(gè)文具盒、2支鋼筆共需100元;3個(gè)文具盒、1支鋼筆共需57元.
(1)每個(gè)文具盒、每支鋼筆各多少元?
(2)若本次表彰活動(dòng),老師決定購買10件作為獎(jiǎng)品,若購買x個(gè)文具盒,10件獎(jiǎng)品共需w元,求w與x的函數(shù)關(guān)系式。如果至少需要購買3個(gè)文具盒,本次活動(dòng)老師最多需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價(jià)為30元,成本價(jià)為20元(不含污水處理部分費(fèi)用).在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)了兩種對(duì)污水進(jìn)行處理的方案并準(zhǔn)備實(shí)施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費(fèi)用為2元,并且每月排污設(shè)備損耗等其它各項(xiàng)開支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi).
(1)若實(shí)施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?
(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知一次函數(shù)的圖象相交于A點(diǎn),函數(shù)的圖象分別交軸、軸于點(diǎn)B,C,函數(shù)的圖象分別交軸、軸于點(diǎn)E,D.

(1)求A點(diǎn)的坐標(biāo);
(2)求的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線y=-2x,下列結(jié)論正確的是(   )
A.圖象必過點(diǎn)(1,2)B.圖象經(jīng)過第一、三象限
C.與y=-2x+1平行D.y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點(diǎn)C坐標(biāo);
(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)P(x,0)
①請(qǐng)用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請(qǐng)說明理由;
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).

(1)取BC中點(diǎn)D,問OD+DA的長度是否發(fā)生改變,若會(huì),說明理由;若不會(huì),求出OD+DA長度;
(2)你認(rèn)為OA的長度是否會(huì)發(fā)生變化?若變化,那么OA最長是多少?OA最長時(shí)四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當(dāng)OA最長時(shí)A的坐標(biāo)是(    ,    ),直線OA的解析式是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)是關(guān)于x的一次函數(shù),則m=     。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)(3,5)在直線y=ax+b(a,b為常數(shù),且a≠0)上,則的值為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案