【題目】如圖,在平面坐標系中,ΔABC是等腰直角三角形,∠ABC=90°,AB=BC,點A坐標為(-8,-3),點B坐標為(0,-5),AC交x軸于點D.
(1)求點C和D的坐標;
(2)點M在x軸上,當ΔAMB的周長最小時,求點M的坐標.
【答案】(1)C(2,3),D(-3,0);(2)M(-5,0).
【解析】
(1)分別作AF⊥y軸,CE⊥y軸,垂足為F,E,證明△AFB≌△CEB,得BE=AF=8,CE=BF=2,又OB=5,從而可得點C 的坐標,設(shè)AC的直線解析式為y=kx+b,把A,C點的坐標分別代入直線解析式,求出k和b的值,令y=0,求出x的值即可;
(2)作A點關(guān)于x軸的對稱點A‘,連接A’B交x軸于點M,此時ΔAMB的周長最小,設(shè)直線A’B的解析式為y=ax+b,把A’,B點的坐標分別代入,求出其解析式,令y=0,求出x的值即可.
(1)分別作AF⊥y軸,CE⊥y軸,垂足為F,E,
∴∠AFB=∠BEC=90°,
∴∠BAF+∠ABF=90°, ∠CBE+∠BCE=90°,
∵∠ABF+∠CBE=∠ABC=90°
∴∠ABF=∠BCE,
∵AB=BC,
∴△ABF≌△BCE,
∴BE=AF,CE=BF
∵A(-8,-3),B(0,-5),
∴AF=8,OF=3,OB=5,
∴OE=3,CE=2,
∴C點坐標為(2,3);
設(shè)直線AC的關(guān)系式為y=kx+b,把A(-8,-3),C(2,3)分別代入得,
,
解得,,
所以,直線AC的解析式為:,
令y=0,則有,解得,x=-3,
∴D點坐標為(-3,0);
(2)如圖,作A點關(guān)于x軸的對稱點A‘,連接A’B交x軸于點M,此時ΔAMB的周長最小,
設(shè)直線A’B的解析式為y=ax+b,把A’(-8,3),B(0,-5)分別代入解析式得,
,
解得,
所以,直線A’B的解析式為:y=-x-5,
令y=0,則x=-5,
所以,M點的坐標為(-5,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CDE都是等邊三角形,B,C,D三點在一條直線上,AD與BE交于點P,AC,BE交于點M,AD,CE交于點N,連接MN,則下列五個結(jié)論:①AD=BE;②∠BMC=∠ANE;③∠APM=60°;④AN=BM;⑤△CMN是等邊三角形.其中一定正確的是__________.(填出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,若CD=AD,∠B=20°,則下列結(jié)論中錯誤的是( )
A. ∠CAD=40° B. ∠ACD=70° C. 點D為△ABC的外心 D. ∠ACB=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位數(shù)字與百位數(shù)字之和為x,十位數(shù)字與個位數(shù)字之和為y,如果x=y,那么稱這個四位數(shù)為“平衡數(shù)”.
(1)最小的“平衡數(shù)”為 ;四位數(shù)A與4738之和為最大的“平衡數(shù)”,則A的值為_______;
(2)一個四位“平衡數(shù)”M,它的個位數(shù)字是千位數(shù)字a的3倍,百位數(shù)字b與十位數(shù)字之和為8,求出所有滿足條件的“平衡數(shù)”M的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月12日是我國第十個全國防災(zāi)減災(zāi)日,也是汶川地震十周年.為了弘揚防災(zāi)減災(zāi)文化,普及防災(zāi)減災(zāi)知識和技能,鄭州W中學(xué)通過學(xué)校安全教育平臺號召全校學(xué)生進行學(xué)習(xí),并對學(xué)生學(xué)習(xí)成果進行了隨機抽取,現(xiàn)對部分學(xué)生成績(x為整數(shù),滿分100分)進行統(tǒng)計.繪制了如圖尚不完整的統(tǒng)計圖表:
調(diào)查結(jié)果統(tǒng)計表
組別 | 分數(shù)段 | 頻數(shù) |
A | 50≤x<60 | a |
B | 60≤x<70 | 80 |
C | 70≤x<80 | 100 |
D | 80≤x<90 | 150 |
E | 90≤x<100 | 120 |
合計 | b |
根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ;
(2)扇形統(tǒng)計圖中,m的值為 ,“D”所對應(yīng)的圓心角的度數(shù)是 度;
(3)本次調(diào)查測試成績的中位數(shù)落在 組內(nèi);
(4)若參加學(xué)習(xí)的同學(xué)共有2000人,請你估計成績在90分及以上的同學(xué)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個頂點的坐標: ( 。,( ),( );
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)的圖象與x軸、y軸分別交于點B、C,與反比例函數(shù)y= (m>0)分別交于點A、B.已知A(﹣8,y0),D(x0,4),tan∠BOA=
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BOD的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點, DA=5,DB=4,DC=3,將線段AD以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段AD',下列結(jié)論:①點D與點D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點A逆時針旋轉(zhuǎn)60°得到;④點D到CD'的距離為3;⑤S四邊形ABCD′=6+ ,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com