分析 (1)作GM⊥OE可得矩形EFGM,設(shè)FG=xcm,可知EF=GM=20$\sqrt{3}$cm,OM=(20-x)cm,根據(jù)tan∠EOG=$\frac{GM}{OM}$列方程可求得x的值;
(2)RT△EFO中求出OF的長及∠EOF的度數(shù),由∠EOG度數(shù)可得旋轉(zhuǎn)角∠FOF′度數(shù),根據(jù)弧長公式計(jì)算可得.
解答 解:(1)如圖,作GM⊥OE于點(diǎn)M,
∵FE⊥OE,GF⊥EF,
∴四邊形EFGM為矩形,
設(shè)FG=xcm,
∴EF=GM=20$\sqrt{3}$cm,F(xiàn)G=EM=xcm,
∵OE=20cm,
∴OM=(20-x)cm,
在RT△OGM中,
∵∠EOG=65°,
∴tan∠EOG=$\frac{GM}{OM}$,即$\frac{20\sqrt{3}}{20-x}$=tan65°,
解得:x≈3.8cm;
故FG的長度約為3.8cm.
(2)連接OF,
在RT△EFO中,∵EF=20$\sqrt{3}$,EO=20,
∴FO=$\sqrt{E{F}^{2}+E{O}^{2}}$=40,tan∠EOF=$\frac{EF}{EO}$=$\frac{20\sqrt{3}}{20}$=$\sqrt{3}$,
∴∠EOF=60°,
∴∠FOG=∠EOG-∠EOF=5°,
又∵∠GOF′=90°,
∴∠FOF′=85°,
∴點(diǎn)F在旋轉(zhuǎn)過程中所形成的弧的長度為:$\frac{85•π•40}{180}$=$\frac{170π}{9}$cm.
點(diǎn)評(píng) 此題主要考查了解直角三角形的應(yīng)用,充分體現(xiàn)了數(shù)學(xué)與實(shí)際生活的密切聯(lián)系,解題的關(guān)鍵是表示出線段的長后,理清線段之間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 110×106 | B. | 11×107 | C. | 1.1×108 | D. | 0.11×108 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{{x}^{2}-2}$ | B. | $\sqrt{-x-2}$ | C. | $\sqrt{x}$ | D. | $\sqrt{{x}^{2}+2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≠1 | B. | x≥-$\frac{1}{2}$且x≠1 | C. | x≥-$\frac{1}{2}$ | D. | x>-$\frac{1}{2}$且x≠1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 3 | C. | 0 | D. | -3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 15$\sqrt{3}$ | B. | 30$\sqrt{3}$ | C. | 45$\sqrt{3}$ | D. | 60$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com