【題目】如圖,P是矩形ABCD下方一點,將△PCD繞點P順時針旋轉(zhuǎn)60°后,恰好點D與點A重合,得到△PEA,連接EB,問:△ABE是什么特殊三角形?請說明理由.
【答案】解:△ABE是等邊三角形.理由如下:……………………………………… 1分
由旋轉(zhuǎn)得△PAE≌△PDC
∴CD=AE,PD=PA,∠1=∠2……………………3分
∵∠DPA=60°∴△PDA是等邊三角形…………4分
∴∠3=∠PAD=60°.
由矩形ABCD知,CD=AB,∠CDA=∠DAB=90°.
∴∠1=∠4=∠2=30°………………………6分
∴AE=CD=AB,∠EAB=∠2+∠4=60°,
∴△ABE為等邊三角形…………………………7分
【解析】
特殊三角形有等腰三角形、等邊三角形、直角三角形(等腰直角三角形),此題根據(jù)旋轉(zhuǎn)的性質(zhì)和矩形的性質(zhì)可知是等邊三角形。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;
(3)直接寫出A2,B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,平移拋物線y=x2﹣2x+3,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A,O,B為頂點的三角形是等腰直角三角形,求平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過⊙O外一點P作⊙O的兩條切線PC,PD,切點分別為C,D,連接OP,CD.
(1)求證:OP⊥CD;
(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,DC=3,將△ADC按逆時針繞點A旋轉(zhuǎn)到△AEF(A、B、E在同一直線上),連接CF,則CF的長為( )
A. B. 5 C. 7 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,有一塊面積等于1200cm2的三角形紙片ABC,已知底邊與底邊BC上的高的和為100cm(底邊BC大于底邊上的高),要把它加工成一個正方形紙片,使正方形的一邊EF在邊BC上,頂點D、G分別在邊AB、AC上,求加工成的正方形鐵片DEFG的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的轉(zhuǎn)盤,分成三個相同的扇形,指針位置固定轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停在指針?biāo)傅奈恢茫⑾鄳?yīng)得到一個數(shù)(指針指向兩個扇形的交線時,當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫出此情景下一個不可能發(fā)生的事件.
(3)用樹狀圖或列表法,求事件“轉(zhuǎn)動兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對值相等”發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為BC上一點,AE⊥DE,∠DAE=30°,若DE=m+n,且m、n滿足m= + +2,試求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C.過點C作CD∥x軸,交拋物線的對稱軸于點D.
(1)求該拋物線的解析式;
(2)若將該拋物線向下平移m個單位,使其頂點落在D點,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com