【題目】已知:如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A﹣1,0),B3,0),與y軸交于點(diǎn)C.過(guò)點(diǎn)CCD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D

1)求該拋物線的解析式;

2)若將該拋物線向下平移m個(gè)單位,使其頂點(diǎn)落在D點(diǎn),求m的值.

【答案】1;(21

【解析】

試題(1)利用待定系數(shù)法即可求得解析式;(2)根據(jù)拋物線的解析式先求得C的坐標(biāo),然后把拋物線的解析式轉(zhuǎn)化成頂點(diǎn)式,求得拋物線的頂點(diǎn),即可求得D的坐標(biāo),從而求得m的值.

試題解析:解:(1)將A-1,0),B3,0)代入中,

得:1b+c0,9+3b+c0

解得:b2,c3

則拋物線解析式為

當(dāng)x=0,y=3,即OC=3

拋物線解析式為=-x-12+4,

頂點(diǎn)坐標(biāo)為(1,4),

對(duì)稱軸為直線x1

∴CD=1,

∵CD∥x軸,

∴m=4-3=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是矩形ABCD下方一點(diǎn),將PCD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°后,恰好點(diǎn)D與點(diǎn)A重合,得到PEA,連接EB,問(wèn):ABE是什么特殊三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AB1C1

(1)在網(wǎng)格中畫(huà)出AB1C1;

(2)計(jì)算點(diǎn)B旋轉(zhuǎn)到B1的過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點(diǎn)A(m,2).

(1)求直線y=kx+m的表達(dá)式;

(2)直線y=kx+m與雙曲線y=﹣的另一個(gè)交點(diǎn)為B,點(diǎn)Px軸上一點(diǎn),若AB=BP,直接寫(xiě)出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AM是中線,DAM所在直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),DEABAC所在直線于點(diǎn)F,CEAM,連接BD,AE

1)如圖1,當(dāng)點(diǎn)D與點(diǎn)M重合時(shí),觀察發(fā)現(xiàn):△ABM向右平移BC到了△EDC的位置,此時(shí)四邊形ABDE是平行四邊形.請(qǐng)你給予驗(yàn)證;

2)如圖2,圖3,圖4,是當(dāng)點(diǎn)D不與點(diǎn)M重合時(shí)的三種情況,你認(rèn)為△ABM應(yīng)該平移到什么位置?直接在圖中畫(huà)出來(lái).此時(shí)四邊形ABDE還是平行四邊形嗎?請(qǐng)你選擇其中一種情況說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用共享單車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t10,B:10t20,C:20t30,D:t30),根據(jù)圖中信息,解答下列問(wèn)題:

(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?

(2)試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用共享單車(chē)情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),當(dāng)月內(nèi)銷(xiāo)售單價(jià)不變,則月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)小趙每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?并求出最大利潤(rùn).

(2)如果小趙想要每月獲得的利潤(rùn)不低于2000元,那么如何制定銷(xiāo)售單價(jià)才可以實(shí)現(xiàn)這一目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子里有若干個(gè)小球,它們除了顏色外,其它都相同,甲同學(xué)從袋子里隨機(jī)摸出一個(gè)球,記下顏色后放回袋子里,搖勻后再次隨機(jī)摸出一個(gè)球,記下顏色,…,甲同學(xué)反復(fù)大量實(shí)驗(yàn)后,根據(jù)白球出現(xiàn)的頻率繪制了如圖所示的統(tǒng)計(jì)圖,則下列說(shuō)法正確的是(  )

A. 袋子一定有三個(gè)白球

B. 袋子中白球占小球總數(shù)的十分之三

C. 再摸三次球,一定有一次是白球

D. 再摸1000次,摸出白球的次數(shù)會(huì)接近330次

查看答案和解析>>

同步練習(xí)冊(cè)答案