7.如圖,對(duì)折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平;再一次折疊,使點(diǎn)D落到EF上點(diǎn)G處,并使折痕經(jīng)過(guò)點(diǎn)A,展平紙片后∠DAG的大小為( 。
A.30°B.45°C.60°D.75°

分析 直接利用翻折變換的性質(zhì)以及直角三角形的性質(zhì)得出∠2=∠4,再利用平行線的性質(zhì)得出∠1=∠2=∠3,進(jìn)而得出答案.

解答 解:如圖所示:由題意可得:∠1=∠2,AN=MN,∠MGA=90°,
則NG=$\frac{1}{2}$AM,故AN=NG,
則∠2=∠4,
∵EF∥AB,
∴∠4=∠3,
∴∠1=∠2=∠3=$\frac{1}{3}$×90°=30°,
∴∠DAG=60°.
故選:C.

點(diǎn)評(píng) 此題主要考查了翻折變換的性質(zhì)以及平行線的性質(zhì),正確得出∠2=∠4是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示幾何體的俯視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=$\frac{a}{x}$的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=$\frac{a}{x}$的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.半徑為6,圓心角為120°的扇形的面積是( 。
A.B.C.D.12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象交于A(2,-1),B($\frac{1}{2}$,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算:$\frac{1}{2}$$\sqrt{18}$+(π+1)0-sin45°+|$\sqrt{2}$-2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列計(jì)算正確的是(  )
A.x3-x2=xB.x3•x2=x6C.x3÷x2=xD.(x32=x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列圖形中不是軸對(duì)稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知 xy=6,x+y=-4,求x$\sqrt{\frac{x}{y}}$+y$\sqrt{\frac{y}{x}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案