【題目】如圖,正方形ABCD的邊長為,E在正方形外,DE=DC,過D作DH⊥AE于H,直線DH,EC交于點(diǎn)M,直線CE交直線AD于點(diǎn)P,則下列結(jié)論正確的是____________
①∠DAE=∠DEA;②∠DMC=45°;③;④若MH=2,則S△CMD=
【答案】①②③
【解析】
①利用等腰三角形的性質(zhì)即可證明.
②根據(jù)DA=DC=DE,利用圓周角定理可知∠AEC= ∠ADC=45°,即可解決問題.
③如圖,作DF⊥DM交PM于F,證明△ADM≌△CDF(SAS)即可解決問題.
④解直角三角形求出CE=EF=可得結(jié)論.
解:∵四邊形ABCD是正方形,
∴DA=DC,∠ADC=90°,
∵DC=DE, ∴DA=DE, ∴∠DAE=∠DEA,故①正確,
∵DA=DC=DE,
在以為圓心,為半徑的圓上,
∴∠AEC=∠ADC=45°(圓周角定理),
∵DM⊥AE, ∴∠EHM=90°, ∴∠DMC=45°,故②正確,
如圖,作DF⊥DM交PM于F,
∵∠ADC=∠MDF=90°,
∴∠ADM=∠CDF,
∵∠DMF=45°,
∴∠DMF=∠DFM=45°,
∴DM=DF,
∵DA=DC,
∴△ADM≌△CDF(SAS),
∴AM=CF,
∴AM+CM=CF+CM=MF=DM,
∴ ,故③正確,
MH=2,
AH=MH=HE=2,AM=EM=
在Rt△ADH中,DH=
∴DM=3,AM+CM=
∴CM=CE=
∴S△DCM=S△DCE,
故④錯(cuò)誤.
故答案①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A、B兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。
(1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;
(2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請用列表法或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對雙方是否公平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展誦讀“詩經(jīng)、唐詩、宋詞、四大名著”的活動(dòng),為了解學(xué)生對著四項(xiàng)誦讀內(nèi)容的喜愛程度,在全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(在這四項(xiàng)誦讀內(nèi)容中,被調(diào)查的學(xué)生必須滿足且只能選擇一項(xiàng))將收集的數(shù)據(jù)進(jìn)行整理,并繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖)請跟進(jìn)圖中提供的信息,回答以下問題:
(1)本次調(diào)查中,隨機(jī)抽取的學(xué)生有__________人,其中喜愛誦讀|宋詞的有___________人.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有2000名學(xué)生,估計(jì)全校學(xué)生中約有多少人喜愛誦讀|宋詞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點(diǎn)C為弧BD的中點(diǎn),則AC的長是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖某公園入口有三級(jí)臺(tái)階,每級(jí)臺(tái)階高18cm,深30cm,擬將臺(tái)階改為斜坡設(shè)臺(tái)階的起點(diǎn)為A,斜坡的起始點(diǎn)為C,現(xiàn)設(shè)計(jì)斜坡BC的坡度i=1:5,則AC的長度是( 。
A.270cmB.210cmC.180cmD.96cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P為BA延長線上一點(diǎn),點(diǎn)C在⊙O上,連接PC,D為半徑OA上一點(diǎn),PD=PC,連接CD并延長交⊙O于點(diǎn)E,且E是的中點(diǎn).
(1)求證:PC是⊙O的切線;
(2)若AB=8,CDDE=15,求PA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,已知,,矩形在直線上繞其右下角的頂點(diǎn)向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)旋轉(zhuǎn)90°至圖②位置,依此類推,這樣連續(xù)旋轉(zhuǎn)100次后頂點(diǎn)在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為3月22日至27日間,我區(qū)每日最高氣溫與最低氣溫的變化情況.
(1)最低氣溫的中位數(shù)是 ℃;3月24日的溫差是 ℃;
(2)分別求出3月22日至27日間的最高氣溫的平均數(shù)、最低氣溫的平均數(shù);
(3)經(jīng)過計(jì)算,最高氣溫和最低氣溫的方差分別為6.33、5.67,數(shù)據(jù)更穩(wěn)定的是最高氣溫還是最低氣溫?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y= kx +b的圖象交反比例函數(shù)的圖象于點(diǎn)A(2,-4)和點(diǎn)B(h,-2),交x軸于點(diǎn)C.
(1)求這兩個(gè)函數(shù)的解析式;
(2)連接QA、OB.求△AOB的面積;
(3)請直接寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com