【題目】小明統(tǒng)計(jì)了某校八年級(3)班五位同學(xué)每周課外閱讀的平均時間,其中四位同學(xué)每周課外閱讀時間分別是小時、小時、小時、小時,第五位同學(xué)每周的課外閱讀時間既是這五位同學(xué)每周課外閱讀時間的中位數(shù),又是眾數(shù),則第五位同學(xué)每周課外閱讀時間是( )
A.小時B.小時C.或小時D.或或小時
【答案】C
【解析】
利用眾數(shù)及中位數(shù)的定義解答即可.
解:當(dāng)?shù)谖逦煌瑢W(xué)的課外閱讀時間為4小時時,此時五個數(shù)據(jù)為4,4,5,8,10,眾數(shù)為4,中位數(shù)為5,不合題意;
當(dāng)?shù)谖逦煌瑢W(xué)的課外閱讀時間為5小時時,此時五個數(shù)據(jù)為4,5,5,8,10,眾數(shù)為5,中位數(shù)為5,符合題意;
當(dāng)?shù)谖逦煌瑢W(xué)的課外閱讀時間為8小時時,此時五個數(shù)據(jù)為4,5,8,8,10,眾數(shù)為8,中位數(shù)為8,符合題意;
當(dāng)?shù)谖逦煌瑢W(xué)的課外閱讀時間為10小時時,此時五個數(shù)據(jù)為4,5,8,10,10,眾數(shù)為10,中位數(shù)為8,不合題意;故第五位同學(xué)的每周課外閱讀時間為5或8小時.故答案為C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,D是劣弧AC中點(diǎn),BD交AC于點(diǎn)E.
(1)求證:AD2=DEDB;
(2)若BC=13,CD=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
①(x+1)2=4x
②x2+3x﹣4=0(用配方法)
③x2﹣2x﹣8=0
④2(x+4)2=5(x+4)
⑤2x2﹣7x=4
⑥(x+1)(x+2)=2x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC折疊,使點(diǎn)B翻折到點(diǎn)E處,若,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A廠一月份產(chǎn)值為16萬元,因管理不善,二、三月份產(chǎn)值的月平均下降率為x(0<x<1).B廠一月份產(chǎn)值為12萬元,二月份產(chǎn)值下降率為x,經(jīng)過技術(shù)革新,三月份產(chǎn)值增長,增長率為2x.三月份A、B兩廠產(chǎn)值分別為yA、yB(單位:萬元).
(1)分別寫出yA、yB與x的函數(shù)表達(dá)式;
(2)當(dāng)yA=yB時,求x的值;
(3)當(dāng)x為何值時,三月份A、B兩廠產(chǎn)值的差距最大?最大值是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的表達(dá)式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BCD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線段EF上一動點(diǎn),M(m,0)是x軸上一動點(diǎn),若∠MNC=90°,直接寫出實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某段筆直的限速公路上,規(guī)定汽車的最高行駛速度不能超過60km/h(即m/s),交通管理部門在離該公路100m處設(shè)置了一速度檢測點(diǎn)A,在如圖所示的坐標(biāo)系中,A位于y軸上,測速路段BC在x軸上,點(diǎn)B在A的北偏西60°方向上,點(diǎn)C在點(diǎn)A的北偏東45°方向上.
(1)在圖中直接標(biāo)出表示60°和45°的角;
(2)寫出點(diǎn)B、點(diǎn)C坐標(biāo);
(3)一輛汽車從點(diǎn)B勻速行駛到點(diǎn)C所用時間為15s.請你通過計(jì)算,判斷該汽車在這段限速路上是否超速?(本小問中取1.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com