【題目】如圖,四邊形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半徑為1,圓心角為60°,則圖中陰影部分的面積是_____.
【答案】
【解析】
根據(jù)菱形的性質得出△ADC和△ABC是等邊三角形,進而利用全等三角形的判定得出△ADH≌△ACG,得出四邊形AGCH的面積等于△ADC的面積,進而求出即可.
連接AC,
∵四邊形ABCD是菱形,
∴∠B=∠D=60°,AB=AD=DC=BC=1,
∴∠BCD=∠DAB=120°,
∴∠1=∠2=60°,
∴△ABC、△ADC都是等邊三角形,
∴AC=AD=1,
∵AB=1,
∴△ADC的高為,AC=1,
∵扇形BEF的半徑為1,圓心角為60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
設AF、DC相交于HG,設BC、AE相交于點G,
在△ADH和△ACG中,
,
∴△ADH≌△ACG(ASA),
∴四邊形AGCH的面積等于△ADC的面積,
∴圖中陰影部分的面積是:S扇形AEF﹣S△ACD==,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】某科技有限公司用萬元作為新產品的研發(fā)費用,成功研制出了一種市場急需的電子產品,已于當年投人生產并進行銷售.已知生產這種電子產品的成本為元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格(元/件)的關系如圖所示,其中為反比例函數(shù)圖象的一部分,為一次函數(shù)圖象的一部分.設公司銷售這種電子產品的年利潤為(萬元).(注意:第一年年利潤=電子產品銷售收人電子產品生產成本研發(fā)費用)
(1)分別寫出圖中段、段(萬件)與(元/件)之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)求出第一年這種電子產品的年利潤(萬元)與(元/件)之間的函數(shù)關系式;
(3)求該公司第一年年利潤的最大值, 并說明利潤最大時是盈利還是虧損,盈利或虧損多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形 ABCD 中, P 為 AB 的中點,的延長線于點 E ,連接 AE 、 BE , 交 DP 于點 F ,連接 BF 、FC ,下列結論:① ;② FB AB ;③ ;④ FC EF . 其中正確的是( )
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為初三學生定制校服,對部分學生的服裝型號做了調查,結果如下:
型號 | 140 | 150 | 160 | 170 | 180 |
男生 | 11 | 18 | 9 | 7 | 5 |
女生 | 9 | 12 | 18 | 7 | 4 |
下列說法正確的是( )
A.男生服裝型號的眾數(shù)大于女生服裝型號的眾數(shù)
B.男生服裝型號的中位數(shù)等于女生服裝型號的中位數(shù)
C.男生服裝型號的眾數(shù)小于女生服裝型號的眾數(shù)
D.男生服裝型號的中位數(shù)大于女生服裝型號的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從等邊△ABC的三個頂點出發(fā),向外分別引垂直于對邊的射線,在射線上分別截取,若,則等邊的邊長為( )
A.2B.3C.D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,∠ABC=45°,AB=AC,點E,F分別CD、AC邊上的點,且AF=CE,BF的延長線交AE于點G.
(1)若DE=2,AD=8,求AE.
(2)若G是AE的中點,連接CG,求證:AE+CG=BG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間某商場搞促銷活動,方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標“0元”、“20元”、“30元”、“50元”,顧客每消費滿300元,就可從箱子里同時摸出兩個球,根據(jù)這兩個小球所標金額之和可獲相應價格的禮品;
(1)若某顧客在甲商商場消費320元,至少可得價值______元的禮品,至多可得價值______元的禮品;
(2)請用畫樹狀圖或列表的方法,求該顧客去商場消費,獲得禮品的總價值不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知:在矩形ABCD中,ABcm,AD=9cm,點O從A點出發(fā)沿AD以acm/s的速度移向點D移動,以O為圓心,2cm長為半徑作圓,交射線AD于M(點M在點O右側).同時點E從C點出發(fā)沿CD以cm/s的速度移向點D移動,過E作直線EF∥BD交BC于F,再把△CEF沿著動直線EF對折,點C的對應點為點G. 若在整過移動過程中△EFG的直角頂點G能與點M重合.設運動時間為t(0<t≤3)秒.
(1)求a的值;
(2)在運動過程中,
①當直線FG與⊙O相切時,求t的值;
②是否存在某一時刻t,使點G恰好落在⊙O上(異于點M)?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com