11.$\frac{1}{3}$的相反數(shù)是-$\frac{1}{3}$,$\frac{1}{3}$的倒數(shù)是3,($\frac{1}{3}$)2=$\frac{1}{9}$.

分析 根據(jù)倒數(shù)、相反數(shù)和平方的定義解答即可.

解答 解:$\frac{1}{3}$的相反數(shù)是-$\frac{1}{3}$,$\frac{1}{3}$的倒數(shù)是 3,($\frac{1}{3}$)2=$\frac{1}{9}$.
故答案為:-$\frac{1}{3}$;3;$\frac{1}{9}$.

點評 此題考查了倒數(shù)、平方和相反數(shù),掌握倒數(shù)、平方和相反數(shù)的定義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.在作二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+m的圖象時,先列出下表:
x-1012345
y10-3-4-30512
y2024681012
請你根據(jù)表格信息回答下列問題,
(1)二次函數(shù)y1=ax2+bx+c的圖象與y軸交點坐標(biāo)為(0,-3);
(2)當(dāng)y1>y2時,自變量x的取值范圍是x<-1或x>5;
(3)請寫出二次函數(shù)y1=ax2+bx+c的三條不同的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.計算:$\root{3}{(-3)^{3}}$+(π-1)0+$\sqrt{9}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.已知$\frac{a}=\frac{2}{3}$,則$\frac{a+b}{2a}$=$\frac{5}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在△ABC中,∠ABC=120°,⊙O是△ABC的外接圓,點P是$\widehat{AmC}$上的一個動點.
(1)求∠AOC的度數(shù);
(2)若⊙O的半徑為2,設(shè)點P到直線AC的距離為x,圖中陰影部分的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計算:
(1)12-(-18)+(-7)-15;           
(2)(-2)3÷$\frac{4}{5}$+3×|1-(-2)2|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.計算:3$\sqrt{3}$-7$\sqrt{12}$+4$\sqrt{27}$=$\sqrt{3}$,$\sqrt{a}$+2$\sqrt{a}$-$\sqrt{9a}$=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)$\sqrt{8}$$+\sqrt{\frac{1}{3}}$$-2\sqrt{\frac{1}{2}}$;
(2)2$\sqrt{12}$×$\frac{\sqrt{3}}{4}÷\sqrt{2}$;
(3)(2$\sqrt{3}+\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$);
(4)(2$\sqrt{48}$-3$\sqrt{27}$)$÷\sqrt{6}$
(5)a$\sqrt{\frac{a}}$×$\sqrt{ab}$×$\sqrt{\frac{1}{ab}}$(b>0);
(6)($\sqrt{2}-\sqrt{3}$)2($\sqrt{2}+\sqrt{3}$)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若x2-|k|x-6=(x+2)(x-3)成立,則k為±1.

查看答案和解析>>

同步練習(xí)冊答案