【題目】已知關(guān)于方程x 的一元二次方程x22k1xk210

1)求證:此方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)如果方程的兩實(shí)數(shù)根滿足x12+x224,求k的值.

【答案】1)詳見(jiàn)解析;(2k11 k2

【解析】

1)直接利用一元二次方程根的判別式進(jìn)行證明,即可得到結(jié)論;

2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,結(jié)合已知條件,解關(guān)于k的一元二次方程,即可得到答案.

解:(1)△=4k124(﹣k21)=8k28k+8

8k28k+8=8k2+6>0,

∴方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)由于x1+x22k1),x1x2=﹣k21,

x12+x224,

∴(x1+x222x1x24

4k122(﹣k21)=4,

3k24k+10

解得:k11,k2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)的中點(diǎn),于點(diǎn)經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)),于點(diǎn),于點(diǎn),則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為40cm的正方形硬紙板的四個(gè)角各剪掉一個(gè)同樣大小的正方形,剩余部分折成一個(gè)無(wú)蓋的盒子.(紙板的厚度忽略不計(jì)).

1)若該無(wú)蓋盒子的底面積為900cm2,求剪掉的正方形的邊長(zhǎng);

2)求折成的無(wú)蓋盒子的側(cè)面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF70°,求河流的寬度(結(jié)果精確到個(gè)位,1.73sin70°0.94,cos70°0.34tan70°2.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過(guò)點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2x1<﹣1,0x21,下列結(jié)論:①4a2b+c0;②2ab0;abc0b2+8a4ac.其中正確的有(  。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,⊙O△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,點(diǎn)FG分別在AD,BC上,連接OG、DG,若OG⊥DG,且⊙O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是

A.CD+DF=4B.CDDF=23

C.BC+AB=2+4D.BCAB=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為,,

請(qǐng)解答下列問(wèn)題:

1)畫(huà)出關(guān)于軸對(duì)稱的圖形,并直接寫(xiě)出點(diǎn)的坐標(biāo);

2)以原點(diǎn)為位似中心,位似比為12,在軸的右側(cè),畫(huà)出放大后的圖形,并直接寫(xiě)出點(diǎn)的坐標(biāo);

3)如果點(diǎn)在線段上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(2)的變化后對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE是兩個(gè)不全等的等腰直角三角形,其中點(diǎn)B與點(diǎn)D是直角頂點(diǎn),現(xiàn)固定△ABC,而將△ADE繞點(diǎn)A在平面內(nèi)旋轉(zhuǎn).

1)如圖1,當(dāng)點(diǎn)DCA延長(zhǎng)線上時(shí),點(diǎn)MEC的中點(diǎn),求證:△DMB是等腰三角形.

2)如圖2,當(dāng)點(diǎn)ECA延長(zhǎng)線上時(shí),MEC上一點(diǎn),若△DMB是等腰直角三角形,∠DMB為直角,求證:點(diǎn)MEC的中點(diǎn).

3)如圖3,當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)任意角度時(shí),線段EC上是否都存在點(diǎn)M,使△BMD為等腰直角三角形,若不存在,請(qǐng)舉出反例;若存在,請(qǐng)予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案