【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列5個結論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE , ⑤CF=BD.正確的有( )個.
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①在△BCE中,∵CE⊥BD,H為BC中點, ∴BC=2EH,又BC=2AB,
∴EH=AB,①正確;
②由①可知,BH=HE∴∠EBH=∠BEH,
又∠ABG+∠EBH=∠BEH+∠HEC=90°,
∴∠ABG=∠HEC,②正確;
③由AB=BH,∠ABH=90°,得∠BAG=45°,
同理:∠DHC=45°,∴∠EHC>∠DHC=45°,
∴△ABG≌△HEC,③錯誤;
④作AM⊥BD,則AM=CE,△AMD≌△CEB,
∵AD∥BC,
∴△ADG∽△HGB,
∴ =2,
即△ABG的面積等于△BGH的面積的2倍,
根據(jù)已知不能推出△AMG的面積等于△ABG的面積的一半,
即S△GAD≠S四邊形GHCE ,
∴④錯誤
⑤∠ECH=∠CHF+∠F=45°+∠F,
又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,
∴∠F=∠HAC,
∴CF=BD,⑤正確.
正確的有3個.
故選C.
根據(jù)BC=2AB,H為BC中點,可得△ABH為等腰直角三角形,HE=BH=HC,可得△CEH為等腰三角形,又∠BCD=90°,CE⊥BD,利用互余關系得出角的相等關系,根據(jù)基本圖形判斷全等三角形,特殊三角形進行判斷.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在邊長為3a+2b的大正方形紙片中,剪掉邊長2a+b的小正方形,得到圖②,把圖②陰影部分剪下,按照圖③拼成一個長方形紙片.
(1)求出拼成的長方形紙片的長和寬;
(2)把這個拼成的長方形紙片的面積加上10a+6b后,就和另一個長方形的面積相等.已知另一長方形的長為5a+3b,求它的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若平行四邊形中有兩個內(nèi)角的度數(shù)比為1∶3,則其中較小的內(nèi)角是( )
A. 30° B. 45° C. 60° D. 75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程3x2+2=6x化成一般形式后,二次項系數(shù)和一次項系數(shù)分別是( )
A. 3、-6B. 3、6C. 3、2D. 2、-6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數(shù)圖象C1與C2上的任一點. 當a ≤ x ≤ b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們在a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點P(x, y1)與Q (x, y2)分別是兩個函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(點A在點B的右側),與其對稱軸交于點C.
(1)求點C的坐標;
(2)設二次函數(shù)圖像的頂點為D,點C與點D關于 x軸對稱,且△ACD的面積等于2.
① 求二次函數(shù)的解析式;
② 在該二次函數(shù)圖像的對稱軸上求一點P(寫出其坐標),使△PBC與△ACD相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com