【題目】拋物線a ≠ 0)滿足條件:(1;(2;

3)與x軸有兩個交點,且兩交點間的距離小于2.以下有四個結(jié)論:;

;,其中所有正確結(jié)論的序號是

【答案】②④

【解析】

∵4a-b=0,拋物線的對稱軸為x=-=-2

∵a-b+c0當(dāng)x=-1時,y0,

拋物線與x軸有兩個不同的交點且這兩個交點之間的距離小于2,

拋物線與x軸的兩個交點的橫坐標(biāo)位于-3-1之間,b2-4ac0

∴16a2-4ac=4a4a-c)>0,據(jù)條件得圖象:

∴a0,b0c0,∴4a-c0∴4aca,

當(dāng)x=-3時,9a-3b+c0,由b=4a,∴c3aaa,

當(dāng)x=1時,y=a+b+c0.故答案為:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李是某服裝廠的一名工人,負責(zé)加工A,B兩種型號服裝,他每月的工作時間為22天,月收入由底薪和計件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識鏈接)連結(jié)三角形兩邊中點的線段,叫做三角形的中位線.

(動手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時,是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.

(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AE平分∠DABCDE點、CF平分∠DCBAB于點F

1)求證:四邊形AECF是平行四邊形;

2)若BG平分∠ABCCDG點,且AD2EG2,求四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2a3+2的平均數(shù)和方差分別是( 。

A. 43B. 6,3C. 3,4D. 65

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x,y

1)求x2+xy+y2

2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點A(-3,0)和B(2,0),與y軸交于點C.

(1)求拋物線的解析式;

(2)如圖1,若點DCB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應(yīng)點為點G,當(dāng)點G恰好落在拋物線的對稱軸上時,求點G的坐標(biāo);

(3)如圖2,若點D為直線BC或直線AC上的一點,Ex軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平形行四邊形ABCD中,連接對角線BD,AB=BD,E為線段AD上一點,AE=BE

(1)如圖1,若∠ABE=30,CD=,求DE的長;

(2)如圖2,F(xiàn)為線段BE上一點,DE=BF,連接AF、DF,DF的延長線交AB于點G,若AF=2DE,求證:DF=2GF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC、BD交于點OBDAD于點D,將ABD沿BD翻折得到EBD,連接ECEB

1)求證:四邊形DBCE是矩形;

2)若BD=4,AD=3,求點OAB的距離.

查看答案和解析>>

同步練習(xí)冊答案