【題目】(知識鏈接)連結三角形兩邊中點的線段,叫做三角形的中位線.

            (動手操作)小明同學在探究證明中位線性質定理時,是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.

            (性質證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程)

            【答案】見解析

            【解析】

            作出圖形,然后寫出已知、求證,延長DEF,使DE=EF,證明△ADE和△CEF全等,根據(jù)全等三角形對應邊相等可得AD=CF,全等三角形對應角相等可得∠F=ADE,再求出BD=CF,根據(jù)內錯角相等,兩直線平行判斷出ABCF,然后判斷出四邊形BCFD是平行四邊形,根據(jù)平行四邊形的性質證明結論.

            解:已知:如圖所示,在△ABC中,DE分別是AB、AC的中點,

            求證:DE=BC,DEBC

            證明:延長DEF,使DE=EF,連接CF,

            ∵點EAC的中點,

            AE=CE,

            在△ADE和△CEF中,

            ,

            ∴△ADE≌△CEF(SAS),

            AD=CF,∠ADE=F,

            ABCF

            ∵點DAB的中點,

            AD=BD,

            BD=CF,

            BDCF

            ∴四邊形BCFD是平行四邊形,

            DFBCDF=BC,

            DEBCDE=BC

            練習冊系列答案
            相關習題

            科目:初中數(shù)學 來源: 題型:

            【題目】如圖,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個頂點E、G、H分別在矩形ABCD的邊ABCD的邊ABCD、DA上,AH=2,連接CF.當CGF是直角三角形時,線段AE的長為______

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】直角三角形的鐵片ABC的兩條直角邊BCAC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC

            (1)求證:四邊形BECD是平行四邊形;

            (2)若∠A=50°,則當∠BOD= ______ °時,四邊形BECD是矩形.

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2,那么稱線段AB被點C黃金分割.為了增加美感,黃金分割經(jīng)常被應用在繪畫、雕塑、音樂、建筑等藝術領域.如圖2,在“附中博識課程中”,小白菜們沿著紫禁城的中軸線,從內金水橋走到了太和殿,領略了古代建筑的宏偉.太和門位于太和殿與內金水橋之間靠近內金水橋的一側,三個建筑的位置關系滿足黃金分割.已知太和殿到內金水橋的距離約為100丈,設太和門到太和殿之間的距離為x丈,要求x,則可列方程為________________

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】如圖A,BC三點在O,直徑BD平分∠ABC,過點DDEAB交弦BC于點E,BC的延長線上取一點F,使得EFDE

            1)求證DF是⊙O的切線

            2)連接AFDE于點M, AD4,DE5,DM的長

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】拋物線a ≠ 0)滿足條件:(1;(2;

            3)與x軸有兩個交點,且兩交點間的距離小于2.以下有四個結論:;

            ;,其中所有正確結論的序號是

            查看答案和解析>>

            科目:初中數(shù)學 來源: 題型:

            【題目】在一塊長方形鏡面玻璃的四周,鑲上與它的周長相等的邊框,制成一面鏡子.鏡子的長與寬的比是3:1.已知鏡面玻璃的價格是每平方米100元,邊框的價格是每米20元,另外制作這面鏡子還需加工費55元.如果制作這面鏡子共花了210元,求這面鏡子的長是__________,寬是___________

            查看答案和解析>>

            同步練習冊答案