【題目】如圖所示,在平行四邊形ABCD中,⊙O是△ABC的外接圓,CD與⊙O相切于點(diǎn)C,點(diǎn)P是劣弧BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連結(jié)PA、PB、PC.
(1)求證:;
(2)當(dāng)時(shí),試判斷△APC與△CBA是否全等,請(qǐng)說明理由;
(3)填空:當(dāng)的度數(shù)為_________時(shí),四邊形ABCD是菱形.
【答案】(1)見解析;(2)全等,見解析;(3)60°
【解析】
(1)連接CO交AB于點(diǎn)E,由CD與圓O相切于點(diǎn)C,得到CE⊥CD,因?yàn)樗倪呅?/span>ABCD為平行四邊形,所以AB∥CD,因此CE⊥AB,所以AE=BE,于是CA=CB;
(2)當(dāng)AC=AP時(shí),△CPA≌△ABC.由于AC=BC,AC=AP,則∠ABC=∠BAC,∠APC=∠ACP,根據(jù)圓周角定理得∠ABC=∠APC,則∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;
(3)如圖2,連接OC,AC,OB,根據(jù)平行線的性質(zhì)得到∠BCD=120°,根據(jù)切線的性質(zhì)得到∠OCD=90°,推出BO垂直平分AC,即可得到結(jié)論.
如圖1,連接CO交AB于點(diǎn)E,
∵CD與圓O相切于點(diǎn)C,
∴CE⊥CD,
∵四邊形ABCD為平行四邊形,
∴AB∥CD,
∴CE⊥AB,
∴AE=BE,
∴CA=CB;
(2)當(dāng)AP=AC時(shí),△APC≌△CBA,理由如下:
∵CA=CB,AP=AC
∴∠ABC=∠BAC,∠APC=∠ACP,
∵∠ABC=∠APC,
∴∠BAC=∠ACP,
在△APC與△CBA中,
∴△APC≌△CBA(AAS);
(3)當(dāng)∠ABC的度數(shù)為60°時(shí),四邊形ABCD是菱形,
如圖2,連接OC,AC,OB,
∵∠ABC=60°,
∴∠BCD=120°,
∵CD與O相切于點(diǎn)C,
∴∠OCD=90°,
∴∠BCO=30°,
∵OB=OC,
∴∠OBC=30°,
∴∠ABO=30°,
∴BO垂直平分AC,
∴AB=BC,
∴四邊形ABCD是菱形。
故答案為60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段AC是⊙O的直徑,過A點(diǎn)作直線BF交⊙O于A、B兩點(diǎn),過A點(diǎn)作∠FAC的角平分線交⊙O于D,過D作AF的垂線交AF于E.
(1)證明DE是⊙O的切線;
(2)證明AD2=2AEOA;
(3)若⊙O的直徑為10,DE+AE=4,求AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)A為圓心AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F為圓心,大于BF的長(zhǎng)度為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若∠C=60°,AE=4,求菱形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線頂點(diǎn);
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)連結(jié)、,拋物線的對(duì)稱軸與軸交于點(diǎn).
①若線段上有一點(diǎn),使,求點(diǎn)的坐標(biāo);
②若拋物線上一點(diǎn),作,交直線于點(diǎn),使,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,為邊上一點(diǎn),過點(diǎn)作交于點(diǎn),連接,為的中點(diǎn),連接.
(觀察猜想)
(1)①的數(shù)量關(guān)系是___________
②的數(shù)量關(guān)系是______________
(類比探究)
(2)將圖①中繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖②所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(拓展遷移)
(3)將繞點(diǎn)旋轉(zhuǎn)任意角度,若,請(qǐng)直接寫出點(diǎn)在同一直線上時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局組織全市中小學(xué)教師開展“訪千家”活動(dòng).活動(dòng)過程中,教育局隨機(jī)抽取了近兩周家訪的教師人數(shù)及家訪次數(shù),將采集到的全部數(shù)據(jù)按家訪次數(shù)分成五類,由甲、乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).請(qǐng)根據(jù)以上信息,解答下列問題:
(1)請(qǐng)把這福條形統(tǒng)計(jì)圖補(bǔ)充完整(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù)).
(2)在采集到的數(shù)據(jù)中,近兩周平均每位教師家訪___________次.
(3)若該市有12000名教師,求近兩周家訪不少于3次的教師約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明經(jīng)過市場(chǎng)調(diào)查,整理出他媽媽商店里一種商品在第天的銷售量的相關(guān)信息如下表:
時(shí)間第(天) | ||
售價(jià)(元/件) | 50 | |
每天銷量(件) |
已知該商品的進(jìn)價(jià)為每件20元,設(shè)銷售該商品的每天利潤(rùn)為元.
(1)求出與的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤(rùn)不低于2400元?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了對(duì)該區(qū)八年級(jí)數(shù)學(xué)學(xué)科教學(xué)質(zhì)量進(jìn)行檢查,對(duì)該區(qū)八年級(jí)的學(xué)生進(jìn)行摸底,為了解摸底的情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)將有關(guān)問題補(bǔ)充完整.
收集數(shù)據(jù):隨機(jī)抽取學(xué)校與學(xué)校的各20名學(xué)生的數(shù)學(xué)成績(jī)(單位:分)進(jìn)行
學(xué)校 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
學(xué)校 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
學(xué)校 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
學(xué)校 |
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計(jì)量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
學(xué)校 | 81.85 | 88 | 91 | 268.43 |
學(xué)校 | 81.95 | 86 | m | 115.25 |
得出結(jié)論:
:若學(xué)校有800名八年級(jí)學(xué)生,估計(jì)這次考試成績(jī)80分以上(包含80分)人數(shù)為多少人?
:根據(jù)表格中的數(shù)據(jù),推斷出哪所學(xué)校學(xué)生的數(shù)學(xué)水平較高,并說明理由.(至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,﹣1),點(diǎn)B(1,1),若拋物線y=x2﹣ax+a+1與線段AB有兩個(gè)不同的交點(diǎn)(包含線段AB端點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.≤a<﹣1B.≤a≤﹣1C.<a<﹣1D.<a≤﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com