【題目】某物流公司的快遞車和貨車每天沿同一條路線往返于AB兩地,快遞車比貨車多往返一趟.如圖所示,表示貨車距離A地的路程y(單位:h)與所用時間x(單位h)的圖像,其間在B地裝卸貨物2h.已知快遞車比貨車早1h出發(fā),最后一次返回A地比貨車晚1h若快遞車往返途中速度不變,且在A、B兩地均不停留,則兩車在往返途中相遇的次數(shù)為________次.

【答案】2

【解析】

根據(jù)圖象可知貨車往返A、B一趟需8小時,則快遞車往返A、B一趟需5小時,依此畫出圖象,再觀察其圖象與貨車圖象相交的次數(shù)即可.

解:根據(jù)題意可知貨車往返AB一趟需8小時,則快遞車往返AB一趟需5小時,在圖上作出快遞車距離A地的路程y(單位:km)與所用時間x(單位:h)的圖象,由圖象可知:兩車在往返途中相遇的次數(shù)為2次.

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1

1)如果點表示的數(shù)互為相反數(shù),那么點表示的數(shù)是_______,點表示的數(shù)是_______;

2)如果點表示的數(shù)互為相反數(shù),那么四點中,點_______表示的數(shù)的絕對值最大,請簡要說明理由;

3)當(dāng)點為原點時,若存在一點到點的距離是點到點的距離的2倍,則點所表示的數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與y軸交于點B,且OA=OB.

(1)求這兩個函數(shù)的解析式;

(2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰RtABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點CCEAD于點E.

(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;

(2)如圖2,過點CCFCE,且CF=CE,連接FE并延長交AB于點M,連接BF,求證:AM=BM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程,并解答后面的問題:

如圖,在平面直角坐標(biāo)系中,,,C為線段AB的中點,求C的坐標(biāo).解:分別過A,Cx軸的平行線,過B,Cy軸的平行線,兩組平行線的交點如圖1.

設(shè)C的坐標(biāo)為,則D、E、F的坐標(biāo)為,

由圖可知:,

C的坐標(biāo)為

問題:

1)已知A(-14),B(3,-2),則線段AB的中點坐標(biāo)為______

2)平行四邊形ABCD中,點A、B、C的坐標(biāo)分別為(1,-4),(0,2),(5,6),求D的坐標(biāo).

3)如圖2,B6,4)在函數(shù)的圖象上,A的坐標(biāo)為(52),Cx軸上,D在函數(shù)的圖象上,以A、B、C、D四個點為頂點構(gòu)成平行四邊形,直接寫出所有滿足條件的D點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.求證:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連接BO并延長交⊙O于點E,連接AE,若AB=6,CD=1,則AE的長為(  )

A. 3 B. 8 C. 12 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:

出廠價

成本價

排污處理費

甲種塑料

2100(元/噸)

800(元/噸)

200(元/噸)

乙種塑料

2400(元/噸)

1100(元/噸)

100(元/噸)

另每月還需支付設(shè)備管理、維護費20000

(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1y2x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);

(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案