【題目】小明經(jīng)過市場調(diào)查,整理出他媽媽商店里一種商品在第天的銷售量的相關(guān)信息如下表:

時間第(天)

售價(元/件)

50

每天銷量(件)

已知該商品的進價為每件20元,設(shè)銷售該商品的每天利潤為.

1)求出的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于2400元?請直接寫出結(jié)果.

【答案】1;(215天時,當(dāng)天的銷售利潤最大,最大利潤為2500元;(311

【解析】

1)根據(jù)利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;
2)根據(jù)(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;
3)根據(jù)二次函數(shù)值大于或等于2400,一次函數(shù)值大于或等于2400,可得不等式,根據(jù)解不等式,可得答案.

解:(1)當(dāng)時,

;

當(dāng)時,

;

綜上:

2)當(dāng)時,

,

∴當(dāng)時,有最大值,最大值為2500

當(dāng)時,

.

,

的增大而減小.

∴當(dāng)時,有最大值,最大值為2400元,

綜上可知,當(dāng)時,當(dāng)天的銷售利潤最大,最大利潤為2500.

3)①當(dāng)1≤x20時,y=-4x2+120x+1600≥2400,
解得:10≤x20
因此利潤不低于2400元的天數(shù)是10≤x20,共10天;
②當(dāng)20≤x≤30時,y=-120x+4800≥2400,
解得:x≤20,
因此利潤不低于2400元的天數(shù)是20≤x≤20,共1天,
所以該商品在整個銷售過程中,共11天每天銷售利潤不低于2400元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,EBC的中點,AB交⊙OD點.

(1)直接寫出EDEC的數(shù)量關(guān)系:_________;

(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;

(3)填空:當(dāng)BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EAD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.

1)如圖1,在BC上找點F,使點FBC的中點;

2)如圖2,連接AC,在AC上取兩點P,Q,使P,QAC的三等分點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點Cx軸上,OA5OC13,如圖所示,在OA上取一點E,將EOC沿EC折疊,使O點落在AB邊上的D點,則E點坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標(biāo)是 ,點Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)期間,某單位欲購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5,需2100元,若購進A種樹苗4,B種樹苗10,需3800元.

(1)求購進A、B兩種樹苗的單價;

(2)若該單位準(zhǔn)備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?

查看答案和解析>>

同步練習(xí)冊答案