【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,EBC的中點,AB交⊙OD點.

(1)直接寫出EDEC的數(shù)量關(guān)系:_________;

(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;

(3)填空:當(dāng)BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.

【答案】ED=EC 2 正方形

【解析】

(1)連結(jié)CD,如圖,由圓周角定理得到∠ADC=90°,然后根據(jù)直角三角形斜邊上的中線直線得到DE=CE=BE;

(2)連結(jié)OD,如圖,利用切線性質(zhì)得∠2+4=90°,再利用等腰三角形的性質(zhì)得∠1=2,3=4,所以∠1+3=2+4=90°,于是根據(jù)切線的判定定理可判斷DE是⊙O 的切線;(3)要判斷四邊形AOED是平行四邊形,則DE=OA=1,所以BC=2,當(dāng)BC=2時,ACB為等腰直角三角形,則∠B=45°,又可判斷BCD為等腰直角三角形,于是得到DEBC,DE=BC=1,所以四邊形AOED是平行四邊形;然后利用OD=OC=CE=DE=1,OCE=90°,可判斷四邊形OCED為正方形

(1)連結(jié)CD,如圖,

AC是⊙O的直徑,

∴∠ADC=90°,

EBC的中點,

DE=CE=BE;

(2)DE是⊙O的切線.理由如下:

連結(jié)OD,如圖,

BC為切線,

OCBC,

∴∠OCB=90°,即∠2+4=90°,

OC=OD,ED=EC,

∴∠1=2,3=4,

∴∠1+3=2+4=90°,即∠ODB=90°,

ODDE,

DE是⊙O的切線;

(3)當(dāng)BC=2時,

CA=CB=2,

∴△ACB為等腰直角三角形,

∴∠B=45°,

∴△BCD為等腰直角三角形,

DEBC,DE=BC=1,

OA=DE=1,AODE,

∴四邊形AOED是平行四邊形;

OD=OC=CE=DE=1,OCE=90°,

∴四邊形OCED為正方形.

故答案為ED=EC;2,正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABx軸交于點A4,0)、與y軸交于點B0,3),直線 BDx軸交于點D,將直線AB沿直線BD翻折,點A恰好落在y軸上的C點,則直線BD對應(yīng)的函數(shù)關(guān)系式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結(jié)論:

①∠ADE=DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一種動畫程序,在平面直角坐標(biāo)系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A1,1),B21),C1,3),用信號槍沿直線y3x+b發(fā)射信號,當(dāng)信號遇到黑色區(qū)域時,區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( 。

A.5≤b≤0B.5b≤3C.5≤b≤3D.5≤b≤5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AGCD于點H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,∠A=80°,BO、CO分別是∠ABC∠ACB的角平分線,則∠BOC等于( 。

A. 140° B. 120° C. 130° D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角中,,、的平分線交于點.

1)求證:;

2)若的外角平分線以及的平分線交于點,(1)結(jié)論是否成立?請在圖中補全圖形,寫出結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ ABC中,AB = AC

(1)如圖 1,如果∠BAD = 30°,ADBC上的高,AD =AE,則∠EDC =

(2)如圖 2,如果∠BAD = 40°,ADBC上的高,AD = AE,則∠EDC =

(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD∠EDC之間有什么關(guān)系?請用式子表示:

(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c過點A(0,2).

(1)若點(﹣,0)也在該拋物線上,求a,b滿足的關(guān)系式;

(2)若該拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為心,OA為半徑的圓與拋物線的另兩個交點為B,C,且△ABC有一個內(nèi)角為60°.

求拋物線的解析式;

若點P與點O關(guān)于點A對稱,且O,M,N三點共線,求證:PA平分∠MPN.

查看答案和解析>>

同步練習(xí)冊答案